32
PUBLIC WIRELESS POWER TRANSFER PROF. DR. IR.HUBREGT J.VISSER

WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

  • Upload
    lamtruc

  • View
    216

  • Download
    3

Embed Size (px)

Citation preview

Page 1: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

PUBLIC

WIRELESS POWER TRANSFERPROF. DR. IR. HUBREGT J. VISSER

Page 2: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

CONTENTS

1. Introduction

2. The History of Radiative Wireless Power Transfer

3. Basics and Limitations

4. Future Perspectives

5. Summary and Conclusions

2

Page 3: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

1. INTRODUCTION

Page 4: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

1. INTRODUCTION

4

DEFINITIONS

Wireless Power Transfer (WPT):A special form of energy

harvesting using dedicated electromagnetic sources.

Energy Harvesting: The process by which energy is obtained by

a device from external sources in the environment and

converted into usable electric energy.

Radiative Wireless power Transfer: WPT using radio waves.

Energy Harvesting

WPT

inductive radiative

Page 5: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

1. INTRODUCTIONENERGY HARVESTING SOURCES

1831 Faraday dynamo WWII Philips dyno torch Modern dyno torch

1880 Curie discovery

of piezoelectricity

Enocean

wireless switchRPG7 fuse

Movement

Pressure

1821 Seebeck experiment

1948 USSR oil

lamp powered

radio

Temperature

gradients

1977 Voyager 2

Radioisotope

Thermoelectric

Generator

Light

1839 Becquerel experiment 1954 Bell Labs PV Modern PV

5

Page 6: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

1. INTRODUCTION

6

APPLICATIONS AND POWER DENSITIES

APPLICATIONSReplacement of or charging batteries in small, wireless, autonomous sensors.

POWER DENSITIES

Picture source: http://smarthomeenergy.co.uk/what-smart-home

Page 7: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

2. THE HISTORY OF RADIATIVE WIRELESS POWER TRANSFER

Page 8: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

2. THE HISTORY OF RADIATIVE WIRELESS POWER TRANSFER

8

1931: HARRELL NOBLE DEMONSTRATES RADIATIVE WIRELESS POWER TRANSFER

100MHz half-wave dipoles

Distance: 5 to 12m

15kW transmit power

Westinghouse laboratories

Demonstrated 1933-1934 at the

Chicago World Fair

Page 9: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

2. THE HISTORY OF RADIATIVE WIRELESS POWER TRANSFER

9

1964: WILLIAM BROWN DEMONSTRATES A WIRELESSLY POWERED HELICOPTER

• 5kW, 2.45GHz magnetron

• 3m diameter parabolic reflector

antenne

• 9m height

• 1.5m2 receive antenna

• 4480 diodes

• 270W DC power

• Raytheon Airborne Microwave

Platform (RAMP) project

Page 10: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

2. THE HISTORY OF RADIATIVE WIRELESS POWER TRANSFER

10

2017: HOLST CENTRE / IMEC & TU/E

2007

2009

2011

2013

2013

2014

2015

2016

2017

Page 11: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

Page 12: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

12

DECREASE OF POWER

PT

Radio waves spread spherically.

For every distance-doubling, the power density [W/m2]

decreases with a factor 4.

Restrictions are not put on the transmit power

only, but also on the transmit antenna: EIRP

For GSM: 0.003 W/m2 (0.3 W/cm2)

For a 4W (EIRP) source at 5 m distance: 0.013 W/m2 (1.3 W/cm2)

Page 13: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

13

EXPECTED RF POWER

PTPR

r

The receive antenna also determines the received power.

example: 4W EIRP at 5 m distance

Patch antenna, 6 cm x 6 cm, 2.4 GHz

RF power on antenna: 58 W

Page 14: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

14

RECTENNA (RECTIFYING ANTENNA)

Page 15: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

15

INCREASING THE DC VOLTAGE

Resonant grid with diodes

Page 16: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

16

RESONANT DIODE GRID

Page 17: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

17

POWER MANAGEMENT

• 30 W DC continuous at 10 m distance (3W EIRP source)

• 60 mW DC for 40 ms, every 2 minutes, at 10 m distance (3W EIRP source)

Page 18: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

3. BASICS AND LIMITATIONS

18

RECTENNA DEMO

Page 19: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

Page 20: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

20

RECTENNA MINIATURIZATION AND INTEGRATION

Page 21: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

21

CHARGING PHONES ON A DISTANCE

• Use distributed radiators

• Combine radiation

patterns smartly

• Create pockets of high

energy density

Page 22: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

22

CHARGING PHONES ON A DISTANCE

Combining in frequency

Page 23: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

23

CHARGING PHONES ON A DISTANCE

Combining in time (pulsing)

Page 24: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

24

CHARGING PHONES ON A DISTANCE

Combining in time (pulsing)

&

Phase-shifting (beam-steering)

Page 25: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

25

CHARGING PHONES ON A DISTANCE

t = t0 + 10ns

Page 26: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

26

CHARGING PHONES ON A DISTANCE

t = t0 + 30ns

Page 27: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

27

CHARGING PHONES ON A DISTANCE

t = t0 + 50ns

Page 28: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

28

CHARGING PHONES ON A DISTANCE

t = t0 + 68ns

Page 29: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

4. FUTURE PERSPECTIVES

29

CHARGING PHONES ON A DISTANCE

t = t0 + 90ns

Page 30: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

5. SUMMARY AND CONCLUSIONS

Page 31: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

5. SAMENVATTING EN CONCLUSIES

31

1. For practical radiative WPT creating enough voltahe and power are challenges;

2. WPT can be realised with a large collecting aperture;

3. For a small collecting aperture we need voltage boosting;

4. Through careful co-design of rectifier and antenna radiative WPT is feasible;

5. Charging cell phones remotely will become feasible by employing distributed, transient

transmitters;

6. For that research (and funding!) is necessary.

Page 32: WIRELESS POWER TRANSFER ·  · 2017-02-17CONTENTS 1. Introduction 2. The History of Radiative Wireless Power Transfer 3. Basics and Limitations 4. Future Perspectives 5. Summary

PUBLIC