6
Ἑᕝᢏ⾡ㄽ㞟➨ᕳᖺ᭶ ᕸ┠ࡅ࠾ほ  ὶ◁ὥỈᒚṔSTUDY ON HYSTERESIS EFFECTS OF FLOODS ON BEDLOAD TRANSPORT WITH A PIPE HYDROPHONE IN UPSTREAM OF NUNOME-DAM 㜰⚽ ᒣᓮஓ ⡿⏣᱁ ᑠᯘⲡᖹ ➉㛛ᗣᘯ ゅஓ Kazuhide TOMISAKA, Tomoya YAMAZAKI, Itaru YONEDA, Sohei KOBAYASHI, Yasuhiro TAKEMON, Tetsuya SUMI, Daizo TSUTSUMI 㠀ဨ ி㜵⅏◊✲ᡤᢏ⾡ᐊ㸦ி㒔ᗓᏱᕷᗉ㸧 㠀ဨ ி㜵⅏◊✲ᡤᢏ⾡ᐊ㸦ி㒔ᗓᏱᕷᗉ㸧 㠀ဨ ி㜵⅏◊✲ᡤᢏ⾡ᐊ㸦㜰ᗓ㧗ᵳᕷዉబཎ㸧 㠀ဨ ㎰༤ ி㜵⅏◊✲ᡤỈ㈨※⎔ቃ◊✲㸦ி㒔ᗓᏱᕷᗉ㸧 ṇဨ ㎰༤ ி㜵⅏◊✲ᡤỈ㈨※⎔ቃ◊✲ᩍᤵ㸦ி㒔ᗓᏱᕷᗉ㸧 ṇဨ ᕤ༤ ி㜵⅏◊✲ᡤỈ㈨※⎔ቃ◊✲ᩍᤵ㸦ி㒔ᗓᏱᕷᗉ㸧 ṇဨ ᕤ༤ ி㜵⅏◊✲ᡤὶᇦ⅏ᐖ◊✲ᩍᤵ㸦ᒱ㜧┴㧗ᒣᕷዟ㣕㦌 Ἠ㒓୰ᑿ㸧 We installed a pipe hydrophone and monitored bedload transport for 3 years at an upstream site of the Nunome Dam in Nara Prefecture. A few dozen times of flood events were observed each year including large-scale floods, such as the typhoon No.18 last year. The hysteresis curve between discharge and bedload was examined by comparing bedload transport between rising and receding phases in each flood event. The curve of each event changed according to the previous occurrence of large flood. Bedload at given discharge was almost equal between rising and receding phases for small floods, while that of receding phases increased for a large flood, and that of rising phases increased for a few subsequent smaller floods. Bedload is likely to increase temporally after a sediment supply from banks and tributaries occurring during large floods. Key Words : pipe hydrophone, bedload, flood events, rising and receding phases, hysteresis curve, sediment supply 㸯㸬 ࡌࡣ ㈓Ỉụὶධᅵ◁㸪ᒣᆅᅵ◁⏕⏘※ ὶ◁㜵ᇦ㸪Ἑᕝᇦᚓ㐠ὶධ◁ሁ◁㔞㸪ᖺᗘ㸪㈓Ỉụෆ῝ࡢὸ 㔞ᇶ ㄪ㸪ὶ◁㜵ᇦ࠸࠾ᅵ◁⅏ᐖṆ㍍ῶ┠ⓗࡓࡋὶ◁㔞ᢕᥱࡓࡢほ ⾜ࡀ 㸬᪉㸪ᒣᆅᅵ◁⛣㐣⛬࠸࠾㸪Ἑᕝ୰ୗὶᇦὶ◁㔞ᘧ ࡓ࠸⏝ᅵ◁⛣㔞᥎ᐃ⾜㸪ᐃ㔞ⓗほ  ࡓࡋ㸪▷ᮇⓗฟỈつᶍకὶ◁ែᢕᥱ ࠸࡞ᅵ◁⏕⏘※㏆◁࠸㜵Ἑᕝ㸪ὶ◁㔞㛫᥋ⓗᡭἲࡓ࠸ほ ㏆ᖺቑ࠶ࡘࡘ 1),2) ┤ࡣᚄ⣙5cm㔠ᒓ⟶ෆ ෆⶶ㸪Ἑᗋᅛᐃὶ◁㔠ᒓ ⟶⾪✺㡢ᣠ㸪⾪✺ࡓࡋ ࡍࢺὶ◁㔞┦ࡢᑐⓗᑠ▱ィ ⨨ⴭ⪅ዉⰋ┴ᮌὠᕝὶᕸ┠ὶධἙᕝᆅ ࠸࠾㈓Ỉụᅵ◁ὶධ㔞ᢕᥱ㐃⥆ほ 20114᭶ᐇ 3) ࡢࡑ㛫ᅵ◁ᢞධᐇ㦂ᅇᐇ ὶ◁2mm 㸪ᅵ◁㔞㔞⥺⟇ᐃࡓࡋࡢࡇ㔞⥺⟬ ࡓࡋ㈓Ỉụᅵ◁ὶධ㔞᥎ᐃࢲࡀ㛫ሁ◁㔞ᴫࡓࡋ㸪ฟỈ ὶ◁㔞ὶ㔞῝㛵ಀ ࡓࡋ3) ᮏ◊✲ほ 㛤ጞ⣙3ᖺ㛫Ⓨ⏕ࡓࡋฟỈ - 43 -

x% ² Ò V v > E Á » ß Ç å0{ | v%Á b e È T b è0¦ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2014/...1= e ] /¡1= e7 '¨ s º v x% ² Ò V v _ > E Á » ß Ç å0{ _

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: x% ² Ò V v > E Á » ß Ç å0{ | v%Á b e È T b è0¦ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2014/...1= e ] /¡1= e7 '¨ s º v x% ² Ò V v _ > E Á » ß Ç å0{ _

STUDY ON HYSTERESIS EFFECTS OF FLOODS ON BEDLOAD TRANSPORTWITH A PIPE HYDROPHONE IN UPSTREAM OF NUNOME-DAM

Kazuhide TOMISAKA, Tomoya YAMAZAKI, Itaru YONEDA, Sohei KOBAYASHI, Yasuhiro TAKEMON, Tetsuya SUMI, Daizo TSUTSUMI

We installed a pipe hydrophone and monitored bedload transport for 3 years at an upstream site of the Nunome Dam in Nara Prefecture. A few dozen times of flood events were observed each year including large-scale floods,such as the typhoon No.18 last year. The hysteresis curve between discharge and bedload was examined by comparing bedload transport between rising and receding phases in each flood event. The curve of each event changed according to the previous occurrence of large flood. Bedload at given discharge was almost equal between rising and receding phases for small floods, while that of receding phases increased for a large flood, and that of rising phases increased for a few subsequent smaller floods. Bedload is likely to increase temporally after a sediment supply from banks and tributaries occurring during large floods.

Key Words : pipe hydrophone, bedload, flood events, rising and receding phases,hysteresis curve, sediment supply

1),2) 5cm

2011 43)

2mm

3)

3

- 43 -

Page 2: x% ² Ò V v > E Á » ß Ç å0{ | v%Á b e È T b è0¦ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2014/...1= e ] /¡1= e7 '¨ s º v x% ² Ò V v _ > E Á » ß Ç å0{ _

1km

300m

50.92km2 1/100

18.3m

48mm

2.25m

mV

6

2 4 16 64 256 1024

3)

16

0

SB(m3/s)

)1(10 616 WLpS B

45.84 p16 16

2mm

0.7 L 2.25m

W 18.3m

16

2m3/s

5m3/s

16

*

)2(11

2

dRi

gdu e

u* m/s 2.65

1 g 9.8m/s2 dm R m ie m/m

50% 0.0985m m

0.01 3

qb*

N

5km

cc/s

pulse/s

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

0

50

100

150

2000

0.001

0.002

0.003

0.004

0:00 0:00 0:00 0:00(m

3 /s)

(m3 /

s)

2013/9/15 9/16 9/17 9/18

2013 9 15 17

- 44 -

Page 3: x% ² Ò V v > E Á » ß Ç å0{ | v%Á b e È T b è0¦ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2014/...1= e ] /¡1= e7 '¨ s º v x% ² Ò V v _ > E Á » ß Ç å0{ _

)3(1

*

gd

qq bb

qb m3/s

(1)4)

2011 4 2013 12

84

2011

12,15 2012 17 2013 18

185m3/s 2013 18

5% 95% 3

1×10-3(m3/s)

10m3/s 2011

10m3/s 2013 2012

3

201318

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

(m3 /

s)

5%

95%

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1 10 100

(m3 /

s)

(m3/s)

5%95%

5%95%

5%95%

2011

2012

2013

( )

3

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.01 0.1 1 10

q b*

*

201120122013

0

50

100

150

200

0

0.001

0.002

0.003

0

50

100

150

200

0

0.001

0.002

0.003

1/1 2/1 3/1 4/1 8/1 12/16/15/1 9/17/1 11/110/1

0

50

100

150

200

0

0.001

0.002

0.003

(m3 /

s)

(m3 /

s)

12

15

17

18

2011 2013

- 45 -

Page 4: x% ² Ò V v > E Á » ß Ç å0{ | v%Á b e È T b è0¦ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2014/...1= e ] /¡1= e7 '¨ s º v x% ² Ò V v _ > E Á » ß Ç å0{ _

5)

4-5

6)

4

2011 4-6

3

2012 2013

2012 2013

7-9

10-12

2013

18 10

150m3/s 2012

17 2009 2004

2

100m3/s

7)

2

4 1

<10m3/s 2 10-20m3/s 3 20-40m3/s 4 >40m3/s

90%

3

10m3/s 20m3/s 40m3/s

50m3/s

40m3/s 0

(m3 )

0.01

1

100

(m3)

1-34-67-910-12

0.01

0.1

1

10

100

1 10 100 1 10 100(m3/s)

1 10 100

104

105

106

107

107

107

105

104

104

106

106

105

- 46 -

Page 5: x% ² Ò V v > E Á » ß Ç å0{ | v%Á b e È T b è0¦ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2014/...1= e ] /¡1= e7 '¨ s º v x% ² Ò V v _ > E Á » ß Ç å0{ _

1 10 100

m3/s

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1 10 100 1 10 100

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

(m3 /

s)(m

3 /s)

1

10

100

1.E-06

1.E-04

1.E-0290% 90%

1

10

100

1.E-06

1.E-04

1.E-02

1

10

100

1.E-06

1.E-04

1.E-02

1

10

100

1.E-06

1.E-04

1.E-02

2011 2012 20134 12 1 12 1 12

(m3 /

s)

90%

- 47 -

Page 6: x% ² Ò V v > E Á » ß Ç å0{ | v%Á b e È T b è0¦ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2014/...1= e ] /¡1= e7 '¨ s º v x% ² Ò V v _ > E Á » ß Ç å0{ _

50m3/s

2 3

50m3/s

3

50m3/s

1) , , :

, ,

Vol.61, pp.35-38, 2008.

2) , , , , :

, , Vol. 62, pp. 18-26, 2010.

3) , , , , , ,

:

, , Vol.19, pp.147-152, 2013.

4) :

11 , , 1999.

5) :

, pp.176-177, 2012.

6) , , , , :

, Vol. 66, pp.

13-22,2014.

7) , ,Reservoir Sedimentation

:

, , 2010

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

1 10 100(m3/s)

(m3 /

s)

( )

- 48 -