114
x x y y p p z z >0 >0 p p z z <0 <0 ψ ψ um physics from um physics from e grained classical probabil e grained classical probabil

X y p z >0 p z

  • View
    249

  • Download
    0

Embed Size (px)

Citation preview

Page 1: X y p z >0 p z

xx

yy

ppzz>0>0ppzz<0<0

ψψ

Quantum physics fromQuantum physics fromcoarse grained classical probabilitiescoarse grained classical probabilities

Page 2: X y p z >0 p z

what is an atom ?what is an atom ?

quantum mechanics : isolated objectquantum mechanics : isolated object quantum field theory : excitation of quantum field theory : excitation of

complicated vacuumcomplicated vacuum classical statistics : sub-system of classical statistics : sub-system of

ensemble with infinitely many ensemble with infinitely many degrees of freedomdegrees of freedom

Page 3: X y p z >0 p z

quantum mechanics quantum mechanics can be described by can be described by classical statistics !classical statistics !

Page 4: X y p z >0 p z

quantum mechanics from quantum mechanics from classical statisticsclassical statistics

probability amplitudeprobability amplitude entanglemententanglement interferenceinterference superposition of statessuperposition of states fermions and bosonsfermions and bosons unitary time evolutionunitary time evolution transition amplitudetransition amplitude non-commuting operatorsnon-commuting operators violation of Bell’s inequalitiesviolation of Bell’s inequalities

Page 5: X y p z >0 p z

essence of quantum essence of quantum mechanicsmechanics

description of appropriate description of appropriate subsystems of subsystems of

classical statistical ensemblesclassical statistical ensembles

1) equivalence classes of probabilistic 1) equivalence classes of probabilistic observablesobservables

2) incomplete statistics2) incomplete statistics 3) correlations between measurements based 3) correlations between measurements based

on conditional probabilitieson conditional probabilities 4) unitary time evolution for isolated 4) unitary time evolution for isolated

subsystemssubsystems

Page 6: X y p z >0 p z

statistical picture of the statistical picture of the worldworld

basic theory is not deterministicbasic theory is not deterministic basic theory makes only statements basic theory makes only statements

about probabilities for sequences of about probabilities for sequences of events and establishes correlationsevents and establishes correlations

probabilism is fundamental , not probabilism is fundamental , not determinism !determinism !

quantum mechanics from classical statistics :quantum mechanics from classical statistics :not a deterministic hidden variable theorynot a deterministic hidden variable theory

Page 7: X y p z >0 p z

Probabilistic realismProbabilistic realism

Physical theories and lawsPhysical theories and lawsonly describe probabilitiesonly describe probabilities

Page 8: X y p z >0 p z

Physics only describes Physics only describes probabilitiesprobabilities

Gott würfeltGott würfelt

Page 9: X y p z >0 p z

Physics only describes Physics only describes probabilitiesprobabilities

Gott würfeltGott würfelt Gott würfelt nichtGott würfelt nicht

Page 10: X y p z >0 p z

Physics only describes Physics only describes probabilitiesprobabilities

Gott Gott würfelt würfelt

Gott würfelt nichtGott würfelt nicht

humans can only deal humans can only deal with probabilitieswith probabilities

Page 11: X y p z >0 p z

probabilistic Physicsprobabilistic Physics

There is oThere is onene reality reality This can be described only by This can be described only by

probabilitiesprobabilities

one droplet of water …one droplet of water … 10102020 particles particles electromagnetic fieldelectromagnetic field exponential increase of distance exponential increase of distance

between two neighboring trajectoriesbetween two neighboring trajectories

Page 12: X y p z >0 p z

probabilistic realismprobabilistic realism

The basis of Physics are The basis of Physics are probabilities probabilities

for predictions of real eventsfor predictions of real events

Page 13: X y p z >0 p z

laws are based on laws are based on probabilitiesprobabilities

determinism as special case :determinism as special case :

probability for event = 1 or 0probability for event = 1 or 0

law of big numberslaw of big numbers unique ground state …unique ground state …

Page 14: X y p z >0 p z

conditional probabilityconditional probability

sequences of sequences of events( measurements ) events( measurements )

are described by are described by

conditionalconditional probabilities probabilities

both in classical statisticsboth in classical statisticsand in quantum statisticsand in quantum statistics

Page 15: X y p z >0 p z

w(tw(t11))

not very suitable not very suitable for statement , if here and nowfor statement , if here and nowa pointer falls downa pointer falls down

::

Page 16: X y p z >0 p z

Schrödinger’s Schrödinger’s catcat

conditional probability :conditional probability :if nucleus decaysif nucleus decaysthen cat dead with wthen cat dead with wcc = 1 = 1 (reduction of wave function)(reduction of wave function)

Page 17: X y p z >0 p z

one - particle wave one - particle wave functionfunction

from coarse graining from coarse graining of microphysical of microphysical

classical statistical classical statistical ensembleensemble

non – commutativity in classical statisticsnon – commutativity in classical statistics

Page 18: X y p z >0 p z

microphysical ensemblemicrophysical ensemble

states states ττ labeled by sequences of labeled by sequences of

occupation numbers or bits noccupation numbers or bits ns s = 0 = 0 or 1or 1

ττ = [ n = [ nss ] = ] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,…] etc.[0,0,1,0,1,1,0,1,0,1,1,1,1,0,…] etc.

probabilities pprobabilities pττ > 0 > 0

Page 19: X y p z >0 p z

function observablefunction observable

Page 20: X y p z >0 p z

function observablefunction observable

ss

I(xI(x11)) I(xI(x44))I(xI(x22)) I(xI(x33))

normalized difference between occupied and empty normalized difference between occupied and empty bits in intervalbits in interval

Page 21: X y p z >0 p z

generalized function generalized function observableobservable

normalizationnormalization

classicalclassicalexpectationexpectationvaluevalue

several species several species αα

Page 22: X y p z >0 p z

positionposition

classical observable : classical observable : fixed value for every state fixed value for every state ττ

Page 23: X y p z >0 p z

momentummomentum

derivative observablederivative observable

classical classical observable : observable : fixed value for every fixed value for every state state ττ

Page 24: X y p z >0 p z

complex structurecomplex structure

Page 25: X y p z >0 p z

classical product of classical product of position and momentum position and momentum

observablesobservables

commutes !commutes !

Page 26: X y p z >0 p z

different products of different products of observablesobservables

differs from classical productdiffers from classical product

Page 27: X y p z >0 p z

Which product describes Which product describes correlations of correlations of

measurements ?measurements ?

Page 28: X y p z >0 p z

coarse graining of coarse graining of informationinformation

for subsystemsfor subsystems

Page 29: X y p z >0 p z

density matrix from coarse density matrix from coarse graininggraining

• position and momentum observables position and momentum observables use only use only small part of the information contained small part of the information contained in in ppττ ,,

• relevant part can be described by relevant part can be described by density matrixdensity matrix

• subsystem described only by subsystem described only by information information which is contained in density matrix which is contained in density matrix • coarse graining of informationcoarse graining of information

Page 30: X y p z >0 p z

quantum density matrixquantum density matrix

density matrix has the properties density matrix has the properties ofof

a quantum density matrixa quantum density matrix

Page 31: X y p z >0 p z

quantum operatorsquantum operators

Page 32: X y p z >0 p z

quantum product of quantum product of observablesobservables

the productthe product

is compatible with the coarse grainingis compatible with the coarse graining

and can be represented by operator productand can be represented by operator product

Page 33: X y p z >0 p z

incomplete statisticsincomplete statistics

classical productclassical product

is not computable from information whichis not computable from information which

is available for subsystem !is available for subsystem ! cannot be used for measurements in the cannot be used for measurements in the

subsystem !subsystem !

Page 34: X y p z >0 p z

classical and quantum classical and quantum dispersiondispersion

Page 35: X y p z >0 p z

subsystem probabilitiessubsystem probabilities

in contrast :in contrast :

Page 36: X y p z >0 p z

squared momentumsquared momentum

quantum product between classical observables :quantum product between classical observables :maps to product of quantum operatorsmaps to product of quantum operators

Page 37: X y p z >0 p z

non – commutativity non – commutativity in classical statisticsin classical statistics

commutator depends on choice of product !commutator depends on choice of product !

Page 38: X y p z >0 p z

measurement correlationmeasurement correlation

correlation between measurements correlation between measurements of positon and momentum is given of positon and momentum is given by quantum productby quantum product

this correlation is compatible with this correlation is compatible with information contained in subsysteminformation contained in subsystem

Page 39: X y p z >0 p z

coarse coarse graininggraining

from fundamental from fundamental fermions fermions

at the Planck scaleat the Planck scaleto atoms at the Bohr to atoms at the Bohr

scalescale

p([np([nss])])

ρρ(x , x´)(x , x´)

Page 40: X y p z >0 p z

quantumquantum particle from particle from classical probabilities in classical probabilities in

phase spacephase space

Page 41: X y p z >0 p z

quantum particlequantum particleandand

classical particleclassical particle

Page 42: X y p z >0 p z

quantum particle quantum particle classical particleclassical particle

particle-wave particle-wave dualityduality

uncertaintyuncertainty

no trajectoriesno trajectories

tunnelingtunneling

interference for interference for double slitdouble slit

particlesparticles sharp position and sharp position and

momentummomentum classical classical

trajectoriestrajectories

maximal energy maximal energy limits motionlimits motion

only through one only through one slitslit

Page 43: X y p z >0 p z

double slit experimentdouble slit experiment

Page 44: X y p z >0 p z

double slit experimentdouble slit experiment

one isolated particle ! one isolated particle ! no interaction between atoms passing through slitsno interaction between atoms passing through slits

probability –probability –distributiondistribution

Page 45: X y p z >0 p z

double slit experimentdouble slit experiment

Is there a classical probability distribution in phase space ,Is there a classical probability distribution in phase space ,and a suitable time evolution , which can describe and a suitable time evolution , which can describe interference pattern ?interference pattern ?

Page 46: X y p z >0 p z

quantum particle from quantum particle from classical probabilities in classical probabilities in

phase spacephase space probability distribution in phase space forprobability distribution in phase space for oonene particle particle

w(x,p)w(x,p) as for classical particle !as for classical particle ! observables different from classical observables different from classical

observablesobservables

time evolution of probability distribution time evolution of probability distribution different from the one for classical particledifferent from the one for classical particle

Page 47: X y p z >0 p z

quantum mechanics quantum mechanics can be described by can be described by classical statistics !classical statistics !

Page 48: X y p z >0 p z

quantum mechanics from quantum mechanics from classical statisticsclassical statistics

probability amplitudeprobability amplitude entanglemententanglement interferenceinterference superposition of statessuperposition of states fermions and bosonsfermions and bosons unitary time evolutionunitary time evolution transition amplitudetransition amplitude non-commuting operatorsnon-commuting operators violation of Bell’s inequalitiesviolation of Bell’s inequalities

Page 49: X y p z >0 p z

quantum physicsquantum physics

wave functionwave function

probabilityprobability

phasephase

Page 50: X y p z >0 p z

Can quantum physics be Can quantum physics be described by classical described by classical

probabilities ?probabilities ?“ “ No go “ theoremsNo go “ theorems

Bell , Clauser , Horne , Shimony , HoltBell , Clauser , Horne , Shimony , Holt

implicit assumption : use of classical correlation implicit assumption : use of classical correlation function for correlation between measurementsfunction for correlation between measurements

Kochen , SpeckerKochen , Specker

assumption : unique map from quantum assumption : unique map from quantum operators to classical observablesoperators to classical observables

Page 51: X y p z >0 p z

zwitterszwitters

no different concepts for classical no different concepts for classical and quantum particles and quantum particles

continuous interpolation between continuous interpolation between quantum particles and classical quantum particles and classical particles is possible particles is possible

( not only in classical limit )( not only in classical limit )

Page 52: X y p z >0 p z

classical particle classical particle without classical without classical

trajectorytrajectory

Page 53: X y p z >0 p z

quantum particle quantum particle classical particleclassical particle

particle-wave particle-wave dualityduality

uncertaintyuncertainty

no trajectoriesno trajectories

tunnelingtunneling

interference for interference for double slitdouble slit

particle particle – wave – wave dualityduality

sharp position and sharp position and momentummomentum

classical trajectoriesclassical trajectories

maximal energy maximal energy limits motionlimits motion

only through one slitonly through one slit

Page 54: X y p z >0 p z

no classical trajectoriesno classical trajectories

also for classical particles in microphysics :also for classical particles in microphysics :

trajectories with sharp position trajectories with sharp position

and momentum for each moment and momentum for each moment

in time are inadequate idealization !in time are inadequate idealization !

still possible formally as limiting casestill possible formally as limiting case

Page 55: X y p z >0 p z

quantum particle classical quantum particle classical particleparticle

quantum - quantum - probability -probability -amplitude amplitude ψψ(x)(x)

Schrödinger - Schrödinger - equationequation

classical probability classical probability

in phase space w(x,p)in phase space w(x,p)

Liouville - equation for Liouville - equation for w(x,p)w(x,p)

( corresponds to Newton ( corresponds to Newton eq. eq.

for trajectories )for trajectories )

Page 56: X y p z >0 p z

quantum formalism forquantum formalism forclassical particleclassical particle

Page 57: X y p z >0 p z

probability distribution for probability distribution for oneone classical particle classical particle

classical probability distributionclassical probability distributionin phase spacein phase space

Page 58: X y p z >0 p z

wave function for classical wave function for classical particleparticle

classical probability classical probability distribution in phase spacedistribution in phase space

wave function for wave function for classical classical particleparticle

depends on depends on positionposition and momentum ! and momentum !

CC

CC

Page 59: X y p z >0 p z

wave function for wave function for oneoneclassicalclassical particle particle

realreal depends on position and momentumdepends on position and momentum square yields probabilitysquare yields probability

CC CC

similarity to Hilbert space for classical mechanicssimilarity to Hilbert space for classical mechanicsby Koopman and von Neumann by Koopman and von Neumann in our case : in our case : real real wave function permits computationwave function permits computationof wave function from probability distributionof wave function from probability distribution( up to some irrelevant signs )( up to some irrelevant signs )

Page 60: X y p z >0 p z

quantum laws for quantum laws for observablesobservables

CC CC

Page 61: X y p z >0 p z

xx

yy

ppzz>0>0ppzz<0<0

ψψ

Page 62: X y p z >0 p z

time evolution of time evolution of classical wave functionclassical wave function

Page 63: X y p z >0 p z

Liouville - equationLiouville - equation

describes describes classicalclassical time evolution of time evolution of classical probability distributionclassical probability distributionfor one particle in potential V(x)for one particle in potential V(x)

Page 64: X y p z >0 p z

time evolution of time evolution of classical wave functionclassical wave function

CC

CC CC

Page 65: X y p z >0 p z

wave equationwave equation

modified Schrödinger - equationmodified Schrödinger - equation

CC CC

Page 66: X y p z >0 p z

wave equationwave equation

CC CC

fundamenal equation for classical fundamenal equation for classical particle in potential V(x)particle in potential V(x)replaces Newton’s equationsreplaces Newton’s equations

Page 67: X y p z >0 p z

particle - wave dualityparticle - wave duality

wave properties of particles :wave properties of particles :

continuous probability distributioncontinuous probability distribution

Page 68: X y p z >0 p z

particle – wave dualityparticle – wave duality

experiment if particle at position x – yes or no :experiment if particle at position x – yes or no :discrete discrete alternativealternative

probability distribution probability distribution for findingfor findingparticle at position x :particle at position x :continuouscontinuous

11

11

00

Page 69: X y p z >0 p z

particle – wave dualityparticle – wave duality

All statistical properties of All statistical properties of classicalclassical particles particles

can be described in quantum formalism !can be described in quantum formalism !

no quantum particles yet !no quantum particles yet !

Page 70: X y p z >0 p z

modification of Liouville modification of Liouville equationequation

Page 71: X y p z >0 p z

evolution equationevolution equation

time evolution of probability has to time evolution of probability has to be specified as fundamental lawbe specified as fundamental law

not known a priori not known a priori Newton’s equations with trajectories Newton’s equations with trajectories

should follow only in should follow only in limiting caselimiting case

Page 72: X y p z >0 p z

zwitterszwitters

same formalism for quantum and same formalism for quantum and classical particlesclassical particles

different time evolution of probability different time evolution of probability distributiondistribution

zwitters : zwitters :

between quantum and classical particle –between quantum and classical particle –

continuous interpolation of time continuous interpolation of time evolution equationevolution equation

Page 73: X y p z >0 p z

quantum time evolutionquantum time evolution

Page 74: X y p z >0 p z

modification of evolution modification of evolution forfor

classical probability classical probability distributiondistribution

HHWW

HHWW

CC CC

Page 75: X y p z >0 p z

quantum particlequantum particle

evolution equationevolution equation

fundamental equation for fundamental equation for quantum particle in potential Vquantum particle in potential V

replaces Newton’s equationsreplaces Newton’s equations

CCCC CC

Page 76: X y p z >0 p z

modified observablesmodified observables

Page 77: X y p z >0 p z

Which observables should Which observables should be chosen ?be chosen ?

momentum: p or ?momentum: p or ?

position : x or ?position : x or ?

Different possibilities , should be Different possibilities , should be adapted to specific setting of adapted to specific setting of measurementsmeasurements

Page 78: X y p z >0 p z

position - observableposition - observable

different observables according to different observables according to experimental situationexperimental situation

suitable observable for microphysis has suitable observable for microphysis has to be foundto be found

classical position observable : idealization classical position observable : idealization of infinitely precise resolutionof infinitely precise resolution

quantum – observable : remains quantum – observable : remains computable with coarse grained computable with coarse grained informationinformation

1515

Page 79: X y p z >0 p z

quantum - observablesquantum - observables

observables for classical observables for classical position and momentumposition and momentum

observables for observables for quantum - quantum - position and momentumposition and momentum

… … do not commute ! do not commute !

Page 80: X y p z >0 p z

uncertaintyuncertainty

quantum – observables containquantum – observables contain statistical partstatistical part ( similar to entropy , temperature )( similar to entropy , temperature )

Heisenberg’sHeisenberg’suncertainty relationuncertainty relation

Page 81: X y p z >0 p z

Use quantum observables Use quantum observables for description of for description of measurements of measurements of

position and momentum of position and momentum of particles !particles !

Page 82: X y p z >0 p z

quantum particlequantum particle

with evolution equationwith evolution equation

all expectation values and correlations forall expectation values and correlations forquantum – observables , as computed fromquantum – observables , as computed fromclassical probability distribution ,classical probability distribution ,coincide for all times precisely with coincide for all times precisely with

predictions predictions of quantum mechanics for particle in of quantum mechanics for particle in

potential Vpotential V

CCCC CC

Page 83: X y p z >0 p z

classical probabilities – classical probabilities – not a deterministic classical not a deterministic classical

theorytheory

quantum paquantum particle from rticle from classical probabilities in phase space !classical probabilities in phase space !

Page 84: X y p z >0 p z

quantum formalismquantum formalismfrom classical from classical probabilitiesprobabilities

Page 85: X y p z >0 p z

pure statepure state

described by quantum wave functiondescribed by quantum wave function

realized by classicalrealized by classicalprobabilities in theprobabilities in theformform

time evolution described bytime evolution described bySchrödinger – equationSchrödinger – equation

Page 86: X y p z >0 p z

density matrix anddensity matrix andWigner-transformWigner-transform

Wigner – transformed densityWigner – transformed densitymatrix in quantum mechanicsmatrix in quantum mechanics

permits simple computationpermits simple computationof expectation values ofof expectation values ofquantum mechanicalquantum mechanicalobservablesobservables

can be constructed from classical wave function !can be constructed from classical wave function !

CC CC

Page 87: X y p z >0 p z

quantum observables quantum observables andand

classical observablesclassical observables

Page 88: X y p z >0 p z

zwitterzwitter

difference between quantum and difference between quantum and classical particles only through classical particles only through different time evolutiondifferent time evolution

continuous continuous interpolatiointerpolationn

CLCL

QMQMHHWW

Page 89: X y p z >0 p z

zwitter - Hamiltonianzwitter - Hamiltonian

γγ=0 : quantum – particle=0 : quantum – particle γγ==ππ/2 : classical particle/2 : classical particle

other interpolating Hamiltonians possible !other interpolating Hamiltonians possible !

Page 90: X y p z >0 p z

HowHow good is quantum good is quantum mechanics ?mechanics ?

small parameter small parameter γγ can be tested can be tested experimentallyexperimentally

zwitter : no conserved microscopic zwitter : no conserved microscopic energyenergy

static state : orstatic state : or

CC

Page 91: X y p z >0 p z

ground state for zwitterground state for zwitter

static state with loweststatic state with lowest

eigenstate for quantum energyeigenstate for quantum energy

zwitter –ground state has admixture of zwitter –ground state has admixture of excited excited

levels of quantum energylevels of quantum energy

quantum - energyquantum - energy

Page 92: X y p z >0 p z

energy uncertainty ofenergy uncertainty ofzwitter ground statezwitter ground state

also small shift of energyalso small shift of energy

Page 93: X y p z >0 p z

experiments for experiments for determination ordetermination orlimits on zwitter – limits on zwitter –

parameter parameter γγ ??

ΔΔE≠0E≠0

almost degenerate almost degenerate energy levels…?energy levels…?

lifetime of nuclear spin states > 60 hlifetime of nuclear spin states > 60 hγγ < 10 < 10-14 -14 ( Heil et al.) ( Heil et al.)

Page 94: X y p z >0 p z

experiments for experiments for determination ordetermination orlimits on zwitter – limits on zwitter –

parameter parameter γγ ??

lifetime of nuclear spin states > 60 h ( Heil et al.) : lifetime of nuclear spin states > 60 h ( Heil et al.) : γγ < 10 < 10-14-14

Page 95: X y p z >0 p z

sharpened observables –sharpened observables –between quantum and between quantum and

classicalclassical

ß=0 : quantum observables, ß=1 :classical ß=0 : quantum observables, ß=1 :classical observablesobservables

Page 96: X y p z >0 p z

weakening of uncertainty weakening of uncertainty relationrelation

exp

eri

men

exp

eri

men

t ?

t ?

Page 97: X y p z >0 p z

quantum particles and quantum particles and classical statisticsclassical statistics

common concepts and formalism for quantum common concepts and formalism for quantum and classical particles :and classical particles :

classical probability distribution and wave classical probability distribution and wave functionfunction

different time evolution , different Hamiltoniandifferent time evolution , different Hamiltonian quantum particle from “ coarse grained “ quantum particle from “ coarse grained “

classical probabilities ( only information classical probabilities ( only information contained in Wigner function is needed )contained in Wigner function is needed )

continuous interpolation between quantum continuous interpolation between quantum and classical particle : zwitterand classical particle : zwitter

Page 98: X y p z >0 p z

conclusionconclusion

quantum statistics emerges from classical quantum statistics emerges from classical statisticsstatistics

quantum state, superposition, quantum state, superposition, interference, entanglement, probability interference, entanglement, probability amplitudeamplitude

unitary time evolution of quantum unitary time evolution of quantum mechanics can be described by suitable mechanics can be described by suitable time evolution of classical probabilitiestime evolution of classical probabilities

conditional correlations for measurements conditional correlations for measurements both in quantum and classical statisticsboth in quantum and classical statistics

Page 99: X y p z >0 p z

experimental challengeexperimental challenge

quantitative tests , how accurate the quantitative tests , how accurate the predictions of quantum mechanics are predictions of quantum mechanics are obeyedobeyed

zwitterzwitter sharpened observables sharpened observables small parameter : small parameter : “ “ almost quantum mechanics “almost quantum mechanics “

Page 100: X y p z >0 p z

endend

Page 101: X y p z >0 p z

Quantenmechanik aus Quantenmechanik aus klassischen klassischen

WahrscheinlichkeitenWahrscheinlichkeitenklassische Wahrscheinlichkeitsverteilung kann klassische Wahrscheinlichkeitsverteilung kann

explizit angegeben werden für :explizit angegeben werden für :

quantenmechanisches Zwei-Zustands-quantenmechanisches Zwei-Zustands-System Quantencomputer : Hadamard System Quantencomputer : Hadamard gategate

Vier-Zustands-System ( CNOT gate )Vier-Zustands-System ( CNOT gate ) verschränkte Quantenzuständeverschränkte Quantenzustände InterferenzInterferenz

Page 102: X y p z >0 p z

Bell’sche UngleichungenBell’sche Ungleichungen

werden verletzt durch werden verletzt durch bedingtebedingte Korrelationen Korrelationen

Bedingte Korrelationen für zwei EreignisseBedingte Korrelationen für zwei Ereignisse

oder Messungen reflektieren bedingte oder Messungen reflektieren bedingte WahrscheinlichkeitenWahrscheinlichkeiten

Unterschied zu klassischen Korrelationen Unterschied zu klassischen Korrelationen

( Klassische Korrelationen werden implizit zur ( Klassische Korrelationen werden implizit zur Herleitung der Bell’schen Ungleichungen Herleitung der Bell’schen Ungleichungen verwandt. )verwandt. )

Bedingte Dreipunkt- Korrelation nicht kommutativBedingte Dreipunkt- Korrelation nicht kommutativ

Page 103: X y p z >0 p z

RealitätRealität

KorrelationenKorrelationen sind physikalische Realität , nicht sind physikalische Realität , nicht nur Erwartungswerte oder Messwerte einzelner nur Erwartungswerte oder Messwerte einzelner ObservablenObservablen

Korrelationen können Korrelationen können nicht-lokal nicht-lokal sein ( auch in klassischer Statistik ) ; sein ( auch in klassischer Statistik ) ; kausale Prozesse zur Herstellung kausale Prozesse zur Herstellung nicht-lokaler Korrelationen nicht-lokaler Korrelationen erforderlicherforderlich

Korrelierte Untersysteme sind nicht separabel in Korrelierte Untersysteme sind nicht separabel in unabhängige Teilsysteme – unabhängige Teilsysteme – Ganzes mehr als Ganzes mehr als Summe der TeileSumme der Teile

Page 104: X y p z >0 p z

EPR - ParadoxonEPR - Paradoxon

Korrelation zwischen zwei Spins wird Korrelation zwischen zwei Spins wird bei Teilchenzerfall hergestelltbei Teilchenzerfall hergestellt

Kein Widerspruch zu Kausalität oder Kein Widerspruch zu Kausalität oder Realismus wenn Korrelationen als Teil der Realismus wenn Korrelationen als Teil der Realität verstanden werdenRealität verstanden werden

hat mal nicht Recht )hat mal nicht Recht )((

Page 105: X y p z >0 p z

Untersystem und Untersystem und Umgebung:Umgebung:

unvollständige Statistikunvollständige Statistik

typische Quantensysteme sind typische Quantensysteme sind UntersystemeUntersysteme

von klassischen Ensembles mit unendlich vielenvon klassischen Ensembles mit unendlich vielen

Freiheitsgraden ( Umgebung )Freiheitsgraden ( Umgebung )

probabilistischeprobabilistische Observablen für Untersysteme : Observablen für Untersysteme :

Wahrscheinlichkeitsverteilung für Messwerte Wahrscheinlichkeitsverteilung für Messwerte

in Quantenzustandin Quantenzustand

Page 106: X y p z >0 p z

conditional correlationsconditional correlations

example :example :two - level observables , two - level observables , A , B can take values ± 1A , B can take values ± 1

Page 107: X y p z >0 p z

conditional probabilityconditional probability

probability to find value +1 for probability to find value +1 for product product

of measurements of A and Bof measurements of A and B

… … can be expressed in can be expressed in terms of expectation valueterms of expectation valueof A in eigenstate of Bof A in eigenstate of B

probability to find A=1 probability to find A=1 after measurement of B=1after measurement of B=1

Page 108: X y p z >0 p z

measurement correlationmeasurement correlation

After measurement A=+1 the system After measurement A=+1 the system must be in eigenstate with this eigenvalue.must be in eigenstate with this eigenvalue.Otherwise repetition of measurement couldOtherwise repetition of measurement couldgive a different result !give a different result !

Page 109: X y p z >0 p z

measurement changes statemeasurement changes statein all statistical systems !in all statistical systems !

quantum and classicalquantum and classical

eliminates possibilities that eliminates possibilities that are not realizedare not realized

Page 110: X y p z >0 p z

physics makes statements physics makes statements about possibleabout possible

sequences of events sequences of events and their probabilitiesand their probabilities

Page 111: X y p z >0 p z

M = 2 :M = 2 :

unique eigenstates for unique eigenstates for M=2M=2

Page 112: X y p z >0 p z

eigenstates with A = 1eigenstates with A = 1

measurement preserves pure states if projectionmeasurement preserves pure states if projection

Page 113: X y p z >0 p z

measurement correlation measurement correlation equals quantum correlationequals quantum correlation

probability to probability to measure measure A=1 and B=1 :A=1 and B=1 :

Page 114: X y p z >0 p z

sequence of three sequence of three measurements measurements

and quantum commutatorand quantum commutator

two measurements commute , not threetwo measurements commute , not three