25
Copyright 2006, Toshiba Corporation. X線反射率法を用いたパターン媒体の 加工ダメージ評価 (株)東芝 研究開発センター 喜々津

X線反射率法を用いたパターン媒体の 加工ダメージ …support.spring8.or.jp/Doc_workshop/PDF_20100316_jisei/...2010/03/16  · Cu-kDr ad it ons(1.54Å) Parallel-plate

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Copyright 2006, Toshiba Corporation.

X線反射率法を用いたパターン媒体の

加工ダメージ評価

(株)東芝 研究開発センター

喜々津 哲

2

20 x 100 nm

パターンド媒体:連続膜をビットサイズに加工V大→熱揺らぎ回避

現行媒体:微小磁性粒子による

の熱揺らぎ問題

<8nm

recording head

track

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

data track

recording head

recording medium

magnetic dot;one-bit / dot

パターンド媒体のコンセプト

3

Challenging Issues製造(加工)方法浮上性能/表面平滑化

Engineering Issues媒体の磁気特性デザインサーボ、ヘッド位置制御法信号制御、チャネル (ビットに同期した記録)ヘッドデザイン

R. White: IEEE Trans. Magn., 33 p.990 (1997)Nakatani: Japanese Pat. (1989)

パターンド媒体の課題

feature size~10nm

4

PS-PMMA ジブロックコポリマー(di-block co-polymer)

ポリスチレン (PS)(分子量: 172000)

ポリメチルメタクリレート(PMMA)(分子量: 41500)

AFM 位相像

80 nm間隔, 40nm直径

PSPMMA

ポリマーの自己組織化を利用した微細パターン

自己組織化・大面積のナノ構造を一度に形成・~10nmも可

自己組織化・大面積のナノ構造を一度に形成・~10nmも可

5

相分離:加熱

PMMAエッチング: O2-RIE

磁性膜エッチング: イオンミリング

PSエッチング: O2-RIE

PS-PMMAスピンコート

SOG埋め込み(Spin on Glass)

磁性膜成膜レジスト塗布 溝インプリント

パターンド媒体形成プロセス

6

Co74Cr6Pt20パターンド媒体(80 nmピッチ、40 nm直径)

全体像SEM像

substrate / underlayer

SOG

CoCrPt

C保護膜

Y. Kamata: Intermag06 GE-09

SOG

CoCrPtパターンド媒体

7

J.Bai et al., J. Appl. Phys., Vol.96, No.2, 1133(2004).

磁界印加⇔MFM測定

反転したドット個数を数える=磁化量

MFMを使ったドット毎の磁気特性測定

8

Hc distribution of aligned CoCrPt dots (40nm )

0 – 0.50.5 – 1.01.0 – 1.51.5 – 2.02.0 – 2.52.5 – 3.03.0 – 3.53.5 – 4.04.0 – 4.54.5 – 5.05.0 – 5.55.5 – 6.06.0 – 6.5> 6.5

Hc0 – 0.5

0.5 – 1.01.0 – 1.51.5 – 2.02.0 – 2.52.5 – 3.03.0 – 3.53.5 – 4.04.0 – 4.54.5 – 5.05.0 – 5.55.5 – 6.06.0 – 6.5> 6.5

Hc

Y. Kamata: Intermag 06 GE-09

各ドットの保磁力分布

9

磁性膜の平均粒径: 22.9 nmパターンサイズ: 40 nm

→ドット中に粒界が1-2個

50nm

dot diameter~40nm

ドットの均一性:数本の粒界、異方性軸分布

端っこにあると熱揺らぎ

垂直配向軸のばらつき、

10

diameter (nm)

Num

ber

of

dots

70605040302010

60

50

40

30

20

10

0

Num

bero

f dot

s

Hc ( kOe)Y. Kamata: JJAP Vol.40,No.3A,999(2007)

磁気特性分布の原因

possible origin of the distributiondot size distributionmicroscopic composition dispersiongrain boundarydamage by the etching process

... TEM, simulation: little damage by ion milling

possible origin of the distributiondot size distributionmicroscopic composition dispersiongrain boundarydamage by the etching process

... TEM, simulation: little damage by ion milling

7.56.04.53.01.50.0

80

70

60

50

40

30

20

10

07.56.04.53.01.50.0

80

70

60

50

40

30

20

10

0

Hc分布: 35.1% サイズ分布:30.7%平均径:34.8nm

11

Ion beam

ダメージ・垂直磁気異方性の劣化・結晶性劣化・ドット形状の破壊

利点:どのような磁性膜でもエッチングできる欠点:エッチングダメージ

Arイオンミリングプロセス

redeposition:再付着 sidewall etching:サイドエッチ

Ion beam

Back sputtering

Ion beam

12

magnetic layer: Co/Pt multilayermagnetic properties by multilayer structure

sensitive to the physical damage

introduction (II)

method: Grazing Incidence X-ray Reflectivity (GIXR)layer structure, roughness

motivation:etching damage analysis of the patterned mediamade by ion milling process with self assembled mask

similar refraction is expected;multilayer: reduced intensityunderlayer: increased intensitydot edge: scattering

13

saturation magnetization (Ms): VSMmagnetic anisotropy energy (Ku): VSM, torque meter crystalline structure: XRDthickness and roughness: GIXRmicrostructure: TEM

2θX-rayMirror Soller slits

0.04 °

Detector

Fine Slit0.27 mm

Sample

Attenuator

GIXRCu-k radiations(1.54Å)

Parallel-platecollimator

Divergence Slit1/32

Sample MaskDivergence Slit1/4

Receiving Slit1.0°

experiment - measurement

14

rough interface gradual density change: ρ(z)ρ(z): error function

zdttz )

2exp(1)( 2

2

Fitting model; roughness

density

σ

z

σ: roughness

case of σ> thickness

15

PS-PMMA diblock copolymer

80nm40nm

PS block (sea)

PMMA block (dots)

AFM

K. Naito et.al.: IEEE Trans.Magn. 38, 1949 (2002)

experiment – fabrication process

substrateunderlayer

magnetic layer

phase separation

diblock copolymer

O2 RIESOG substitution

Ar ion millingCF4 RIE

16

Taglass sub.

[Co/Pt]20

10 nm

Glass Sub.

TaPtCo

20 periods

10 nm

40 nm

Glass Sub.

Ta

Before Etching After Etching

Taglass sub.

[Co/Pt]20~ 25 nm

Co: 0.3nm, Pt: 0.9nmDC sputteringno substrate heatingAr pressure: 0.5 Pa

substrate coolingaccelerating voltage : 400 eVAr pressure : 2.5X10-4 Torretching angle : 30 deg.

Sputtering condition

Milling condition

Co/Pt multilayer sample

17

little damage to the magnetic properties- reduction in Ms: proportional to the packing density- Ku (by torque curve amplitude): no change

average diameter: 37.3 nmsigma: 6.55 nm (17.6 %)

-10 -5 0 5 10-400

-300

-200

-100

0

100

200

300

400

Before Etching

After Etching

M

agne

tizat

ion

(em

u/cc

)

Magnetic Field (kOe)

1 m

magnetic properties

18

50: little change throughout the etching process

-2 : - reduced intensity by volume reduction- before etching: satellite peak from multilayer structure- after etching: no satellite peak damage?

30 32 34 36 38 40 42 440

2000

4000

6000

8000

10000

12000

Co (002)Pt (111)

n = -1

After Etching

Before Etching

Inte

nsity

(cou

nts)

2 Theta (degree)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50100

150

200

250

300

350

n = -1

Inte

nsit

y(cou

nts)

2 Theta (degree)

0 1 2 3 40123456789

10

50

(deg

ree)

Etching Time (min)

crystal properties (XRD: -2 )

sample condition

19

2 4 6 8100

101

102

103

104

105

106

107

After Etching

Before Etching

Inte

nsity

(cou

nts)

2 Theta (degree)

X-ray reflection profile

large change at small angle region;multilayer, dot structure

large change at small angle region;multilayer, dot structure

20

2 4 6 8

10-6

10-5

10-4

10-3

10-2

10-1

100

Simulation

After Etching

Inte

nsity

(a.u

.)

2 Theta (degree)

profile details (after etching)

etch-out region:sub/underlayer

roughness:surfece, interface

21

2 4 6 8

10-6

10-5

10-4

10-3

10-2

10-1

100

Simulation

Before Etching

In

tens

ity(a

.u.)

2 Theta (degree)

7.45

0.37/0.90

0.90

Fitting thickness (nm)

0.5―Glass Sub.

0.508.0Ta

0.45/0.900.3/0.9[Co/Pt] 20

0.900.9Top Pt

Roughness (nm)

Nominalthickness (nm)

- good agreement with nominal thickness- roughness ~1nm at [Co/Pt] and top

Glass Sub.

Ta

2 4 6 8

10-6

10-5

10-4

10-3

10-2

10-1

100

Simulation

After Etching

Inte

nsity

(a.u

.)

2 Theta (degree)

7.40

0.38/0.80

0.80

Fitting thickness (nm)

0.5―Glass Sub.

0.558.0Ta

0.45/0.900.3/0.9[Co/Pt] 20

3.800.9 Top Pt

Roughness (nm)

Nominalthickness (nm)

fitting results

- little change in ML structure (roughness)- large roughness at the top Pt layer

before etchingblack: simulation

after etchingblack: simulation

22

origin of the large surface roughness effective Pt surface

100 nmsome dots are chipped by the over-etching condition

chipped dotsbutsmooth ML structure

little change in magnetic properties

23

Etching angle : 30 deg.Etching time : 8 min.5 nm

CoPt合金の例:サイドダメージは少ない

10nm

clear crystalline lattice:no damage

90 deg.

50 nm

35 nm

Ti underlayer

24

for further precise estimation

underlayer

difference in reflectivity of underlayerbetween etch-out region and dot region

Analytical estimation is difficult.

+Summation of two spectra(or subtraction) could work well.

oxide, mixture, ...

Issue: strong reflection from the etched-out region

25

Grazing Incidence X-ray reflection methodfor etching damage analysis of BPM

Co/Pt multilayer patterned media:large surface roughness with smooth ML structure

chipping by the over-etching conditionsmooth ML little damage of magnetic properties

ion milling process causes less damage

issues for precise estimation;strong reflection from reside underlayer

Grazing Incidence X-ray reflection methodfor etching damage analysis of BPM

Co/Pt multilayer patterned media:large surface roughness with smooth ML structure

chipping by the over-etching conditionsmooth ML little damage of magnetic properties

ion milling process causes less damage

issues for precise estimation;strong reflection from reside underlayer

conclusion