17
Yulia Trenikhina SRF 2015 Whistler, Canada 09/16/2015 Nanostructure of the penetration depth in Nb cavities: debunking the myths and new findings

Yulia Trenikhina SRF-15

Embed Size (px)

Citation preview

Page 1: Yulia Trenikhina SRF-15

Yulia TrenikhinaSRF 2015Whistler, Canada09/16/2015

Nanostructure of the penetration depth in Nb cavities: debunking the myths and new findings

Page 2: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada2

50 100 150 200 250 300 350

2

4

6

8

10

12

14

16EP + 120C baking, Bpeak = 119 mT

Angle (deg)

Sens

or n

umbe

r

1016254063100159252400

∆T (mK)

3X0-10

50 100 150 200 250 300 350

2

4

6

8

10

12

14

16Electropolished, Bpeak = 119 mT

Angle (deg)

Sens

or n

umbe

r

1016254063100159252400

∆T (mK)

310-10

50 100 150

1

10

100

Nb 310-10 Nb 3X0-10

∆T (m

K)

B (mT)

50 100 150109

1010

1011

FG FGB

Q0

Bpeak (mT)

(a)

(b)

(c)

(d)

HFQS elimination in FG EP cavities after 120°C bake

HFQS-producing treatments

High Field Q-slope

HFQS recipes:EPEP+800C bake+BCPEP+800C bake

EPEP+120C

Page 3: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Cavity diagnostics: EP vs. EP+120C baked

3

We used three different elliptical cavities made of highpurity niobium for our studies: two fine grain (!50 lm)cavities of TESLA shape24 with the fundamental TM010

mode at the resonant frequency f0 ¼ 1:3GHz, and one largegrain (!10 cm) cavity of Mark-III shape with f0 ¼ 1:5GHz.Fine grain cavities were electropolished for #120 lm mate-rial removal, and one of the cavities was additionally bakedunder vacuum at 120 $C for 48 h. The large grain cavitywas chemically polished (BCP) instead of electropolishing.Before rf measurements all cavities were high pressurewater rinsed, which is a standard treatment to avoidfield emission caused by microparticles. Using standardphase-lock techniques,25 the intrinsic quality factor

Q0 / 1= !Rs!Rs ¼

xl0ÐVH2dVÐ

ARsðHÞH2dA

" #was measured for each of

the cavities at 2 K as a function of the peak surface mag-netic field Bpeak. Fig. 1(a) shows corresponding excitationcurves Q0ðBpeakÞ for both fine grain cavities. The Q0ðBpeakÞ

curve for the large grain cavity was similar to the unbakedfine grain cavity.

A custom-built temperature mapping system similar to

that described in Ref. 26 was attached to the outside of the

cavity walls during the measurements. Spatial maps of the

temperature difference DT ¼ Ton ' Toff with and without rf

power in the cavity were obtained at different rf field levels.

Such DT is proportional to the local power dissipation

Pc / RsðHÞH2, where RsðHÞ is the local surface resistance

and H is the local magnetic field. In Fig. 1(f), the magnitude

of the local magnetic field at each sensor location and char-

acteristic temperature maps are shown for baked and

unbaked fine grain cavities at the same Bpeak ¼ 119mT.

Individual DTðBÞ for samples 1-EP and 3-EP-MB circled on

the maps are shown in Fig. 1(b). Samples 2-EP and 6-BCP

had DTðBÞ curves of the shape similar to 1-EP, and that for4-BCP would be expected to be the same. All mild baked

TABLE I. List of cutout samples investigated with VEPAS (EP, electropolishing; BCP, buffered chemical polishing; MB ¼ mild baking ' vacuum bake at120 $C for 48 h).

Grain size Cavity/sample treatment Sample name Microwave dissipation

50lm EP 120lm 1-EP Strong increase from !100mT (Fig. 1(b))

50lm Nb-310-10 þMB 1-EP-MB Not measured

50lm EP 120lm 2-EP Mild increase from !100mT

50lm Nb-240-10 þMB 2-EP-MB Not measured

50lm EP 120lm þ MB 3-EP-MB Low up to 160mT (Fig. 1(b))

50lm EP 120lm þ BCP 50lm 4-BCP Not measured

50lm EP 120lm þ BCP 50lm þMB 5-BCP-MB Not measured

!10 cm BCP 120lm 6-BCP Strong increase from !100mT

!10 cm BCP 120lm þ MB 7-BCP-MB Not measured

FIG. 1. (a) Results of Q0ðBpeakÞ measurements on fine grain electropolished cavities before and after mild baking; (b) individual DTðBÞ for samples 1-EP and3-EP-MB; (c) temperature mapping boards attached to the outside cavity walls; three boards are removed for demonstration purposes; (d) single individualboard with sensor numbering; (e) schematic showing how angle is measured around the rotational cavity axis; 36 boards are uniformly spaced with 10$ separa-tion; (f) local magnetic field B at sensor locations and unfolded temperature maps of DT / Rs for unbaked and baked fine grain electropolished cavities atBpeak ¼ 119mT.

232601-2 Romanenko et al. Appl. Phys. Lett. 102, 232601 (2013)

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:130.126.32.13 On: Fri, 07 Mar 2014 02:54:31

EP and 120C bakedEP (not baked)

T-maps @ 28 MV/m

Page 4: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

EP vs. EP+120C baked: what is causing HFQS?

4

few monolayers of hydrocarbons

Nb2O5 2-5nmNbOx x<2.5

Nb bulk

magnetic field penetration depth @2K <100 nm

Near-surface layer of SRF cavity after typical processing

What in the near-surface is causing different dissipation character?

Page 5: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Hypothesis for the HFQS problem: what is the difference?

5

)".($ *1)#-($ )"#$ #'#-8<$ %"*'8#($ )"#$ -#*%).&'($ H-&=0%#DL,$*$(3*11$-#8.&'$&,$)"#$(0-,*%#$2#%&3#($(".#1=#=$,-&3)"#$H&1*-.Y.'8$%0--#')$*'=$ )"#$;&1)*8#$8-*=.#')$ .)$H-&T=0%#(B$ )"#'$ )"#$ )"#-3&=<'*3.%$ %&'=.).&'($ .'$ )".(&%%10=#=$-#8.&'$-#;#-)$)&$)"&(#$)"*)$#J.()$.'$)"#$*2(#'%#&,$)"#$H&1*-.Y.'8$%0--#')(D$A&-$#J*3H1#B$.,$)"#$3&0)"$&,)"#$H&-#$("&I'$.'$A.8D$F$I*($(0==#'1<$21&%7#=$2<$)"#H-#%.H.)*).&'$ &,$ '.&2.03$ &J.=#$ 42<$ "<=-&1<(.($ &,$ )"#K2TA$%&3H1#J#(6$&-$*$8*($20221#B$)"#'$)"#$;&1)*8#$8-*T=.#')$I&01=$2#$;.-)0*11<$-#3&;#=$*11&I.'8$=.-#%)$-#*%T).&'$2#)I##'$)"#$(&10).&'$*)$)"#$).H$&,$)"#$H&-#$*'=$)"#K2$ 3#)*1D$ ?%%&-=.'8$ )&$ )"#$ %*1%01*).&'($ *2&;#B$ )".(("&01=$ -#(01)$ .'$ )"#$ H-&=0%).&'$ &,$ "<=-&8#'$ 8*($ )"##JH*'(.&'($ &,$ I".%"$ I&01=$ %1#*-$ )"#$ 21&%7*8#DL';#().8*)&-($ "*;#$ %&11#%)#=$ )"#$ 8*($ &2(#-;#=$ =0-.'8*'&=.%$H&1*-.Y*).&'$&,$3#)*1(D$A&-$ #J*3H1#B$M*-8#-&'*'=$ M#'(&'$ ^FF_$ *'*1<Y#=$ )"#$ 8*($ #;&1;#=$ ,-&3$ ?1=0-.'8$*'&=.%$H&1*-.Y*).&'$*)$H&)#').*1($I"#-#$)"#-3&T=<'*3.%$ %&'(.=#-*).&'$ I&01=$ H-#=.%)$ )"#$ 8*($ ("&01=2#$&J<8#'$*'=$)"#<$,&0'=$)"#$8*($#;&1;#=$)&$2#$#((#'T).*11<$ H0-#$ "<=-&8#'D$ R.3.1*-$ -#(01)($ "*;#$ 2##'-#H&-)#=$,&-$)"#$8*(#($#;&1;#=$=0-.'8$*'&=.Y*).&'$&,$?1*11&<($^E_D

5" B*(1*682C:9'*9$+

!"#$"<=-&8#'$*%).;.).#($%*1%01*)#=$.'$)#-3($&,$#/0.;T*1#')$H-#((0-#$&-$,08*%.)<$*-#$%1#*-1<$30%"$8-#*)#-$)"*'*)3&(H"#-.%$H-#((0-#$*'=$"<=-&8#'$8*($20221#$'0%1#T*).&'$ %*'$ 2#$ #JH#%)#=$I"#'$ )"#$ (0-,*%#$ -#3*.'($ 2*-#,&-$ *'<$ (.8'.,.%*')$ 1#'8)"$ &,$ ).3#$ .'$ )"#(#$ #';.-&'T3#')(D$@&I#;#-B$-#%&32.'*).&'$*'=$20221#$'0%1#*).&'

%*'$ 2#$ ;#-<$ (1&I$ %&3H*-#=$ )&$ #1#%)-&'$ )0''#1.'8B-#=0%).&'B$*'=$#;#'$3*(($ )-*'(H&-)D$]#%&32.'*).&'$ .()<H.%*11<$ ,&0'=$ )&$ 2#$ (1&I#-$ )"*'$ 2017$ =.,,0(.&'$ .'"<=-&8#'$ 8*($ H"*(#$ =#(&-H).&'$ #JH#-.3#')($ &'$ K2I"#-#$@5 3&1#%01#($%*'$=#(&-2$=.-#%)1<$I.)"&0)$"*;.'8)&$*%%0301*)#$*'=$'0%1#*)#$20221#($^FPB FQ_D$!"#-#,&-#BI".1#$ )"#$ *%)0*1$ *%).;.)<$ &,$ "<=-&8#'$ &'$ )"#$ (0-,*%#3*<$2#$%&'(.=#-*21<$1#(($ )"*'$)"*)$#().3*)#=$2<$)"#(##/0.1.2-.03$%*1%01*).&'(B$.)$I.11$2#$%&'(.=#-*21<$8-#*)#-)"*'$ )"#$ #J)#-'*1$ H-#((0-#$ *'=$ ;#-<$ ".8"$ "<=-&8#'*%).;.).#($3*<$2#$-#*%"#=$.'$)"#$,.-()$,#I$3&3#')($*,)#-I*)#-$ %&')*%)($ 2*-#$ 3#)*1$ 2#%*0(#$ #1#%)-&'$ )0''#1.'8I.11$.'.).*11<$8#'#-*)#$*=(&-2#=$"<=-&8#'$;#-<$/0.%71<%&3H*-#=$ )&$ )"#$ ).3#$ -#/0.-#=$ ,&-$ 3*(($ )-*'(H&-)&-$ &)"#-$ -#*%).&'(D$ !"#$ 1&8.%*1$ %&'%10(.&'$ .($ )"*)I".1#$)"#$"<=-&8#'$*%).;.)<$I.11$'&)$-#*%"$)"#$)"#&-#).T%*1$;*10#(B$.)$I.11$2#$1*-8#$*'=$)".($I.11$-#(01)$.'$*$1*-8#=-.;.'8$ ,&-%#$ ,&-$ "<=-&8#'$ *2(&-H).&'$ *'=$ -#*%).&'(I.)"$ "<=-&8#'$ .'%10=.'8$ )"#$ ,&-3*).&'$ &,$ '.&2.03"<=-.=#(DK.&2.03$ "<=-.=#($ "*;#$ 2##'$ ()0=.#=$ #J)#'(.;#1<

*'=$ *$ '032#-$ &,$ =.,,#-#')$ "<=-.=#$ H"*(#($ "*;#$ 2##'.=#').,.#=$^FV_D$@&I#;#-B$)"#$'.&2.03T"<=-&8#'$H"*(#=.*8-*3$"*($'&)$2##'$%&3H1#)#1<$=#)#-3.'#=$*'=$)"#-#*-#$ *$ '032#-$ &,$ H"*(#($ )"*)$ *0)"&-($ "*;#$ .=#').,.#=2<$ &'#$ )#%"'./0#$ &-$ *'&)"#-$ )"*)$ "*;#$ '&)$ 2##'%&',.-3#=$ &-$ )"#$ H"*(#$ ,.#1=$ %1#*-1<$ .=#').,.#=D`*'%"#()#-$ *'=$ G.)-#$ ^FVB P:_$ -#;.#I#=$ )"#$ 1.)#-*)0-#&'$ '.&2.03T"<=-&8#'$ H"*(#($ *'=$ %&3H.1#=$ )"#=*)*$ .')&$ )"#$ *((#((3#')$ &,$ )"#$ )#3H#-*)0-#T%&3H&(.T).&'$ =.*8-*3$ ("&I'$ .'$ A.8D P4*6D$ !".($ =.*8-*3("&I($P$H"*(#(O

[&103#$99SB$K032#-$SB$R#H)#32#-TU%)&2#-$5:9:\&0-'*1$&,$]#(#*-%"$&,$)"#$K*).&'*1$L'().)0)#$&,$R)*'=*-=($*'=$!#%"'&1&8<

>FP

@*."2D" K.&2.03T@<=-&8#'$H"*(#$=.*8-*3$-#H&-)#=$2<$`*'%"#()#-$*'=$G.)-#$^FV_$4*6$*'=$5S hN$#/0.1.2-.03$H-#((0-#$*'=$H&)#').*1$#().3*)#($,&-"<=-.=#$H"*(#($2*(#=$&'$)"#$=*)*$&,$A-&33$*'=$\#"'$^P9_$,&-$)"#$α *'=$α i β -#8.&'($*'=$`*'%"#()#-$*'=$G.)-#$^FV_$,&-$)"#$β i δ -#8.&'$426D

Nb hydrideprecipitation

Tool:T-dependent TEM electron diffraction

phase characterization

Why to look at Nb-H system?1. H concentration in near-surface

of cutouts > 10 at.%

2. ε, β are NOT superconducting

Difference in precipitation state of Nb-H in the near-surface?

Page 6: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Hypothesis: Nb hydrides and HFQS

6

• Normal conducting Nb hydrides are SC by proximity effect up to Hcritical = HFQS onset (A. Romanenko et.al., Supercond. Sci. Technol. 26, 035003 (2013));

• Major role of vacancies and vacancy-hydrogen complexes in the 120C baking effect (A. Romanenko et.al., Appl. Phys. Lett. 10, 232601 (2013)).

NbOx

Nb2O5

Nb

H

NbOx

Nb2O5

Nb

V-nHcomplex

EP cavity 120˚C-baked EP cavity

Less/no NbHx precipitation!

~50 nm

Page 7: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada7

30

NUANCE Center*exploring the inner space

TEM Sample Preparation with FIB @ Ben Myers - 2009

Lift-Out (4 of 4)L

TiltL

Raise Omniprobe

~10�mL

Retract Pt GIS needleL

Send Omniprobe

to Eucentric

HighL

Retract Omniprobe

FIB

FIB

37

NUANCE Center*exploring the inner space

TEM Sample Preparation with FIB @ Ben Myers - 2009

Cleaning (1 of 2)J

Tilt into sample +/-

3-5°J

Application: SiJ

Shape: RectangleJ

Size: ~10�m (X) x ~2�m (Y)J

5kV, ~46pAJ

~2-5min per side

+/-

FIB -

~52+5°

tilt FIB -

~52-5°

tilt

SEM

22

NUANCE Center)exploring the inner space

TEM Sample Preparation with FIB ? Ben Myers - 2009

E-beam PtE

Tilt

E

Application: Pt e-DepE

Shape: Rectangle

E

15�m (X) x 1.5�m (Y) x 200nm (Z)E

2-5kV, >1.4nA

E-beam dep

at 0°

Tilt (SEM)E-beam dep

at 52°

Tilt (SEM)

SEM

~10 μm

~3 μ

m

SEM images during the FIB sample preparation

TEM sample preparation: focused ion beamC

u grid

Pt protective layer

Courtesy of B. Meyer

Page 8: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Nb near-surface at room T

8

[113] [011]

[-111]

EP and EP+120C baked at room T

SAD, NED, SEND: only Nb at room TH in solid solution (α-phase)

[100]

Pt protective layer

Nb bulk

Nb oxide

200 nm

TEM: low mag overview

Page 9: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Nb near-surface at cryogenic T

9

βε

ε+β

βε

ε β β

ε ε ε+β ε+β

ε ε ε

ε

ε

ε

ε

ε ε

ε

ε

ε+β

ε+β

εε+β β_ _ _ _

EP at 94K EP+120C baked at 94K

Nb+ε(Nb4H3)

Nb+β(NbH)

Nb+ε,β

Nb hydrides precipitation

Nb

NO Nb hydrides precipitation

Nb

Page 10: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Nb near-surface at cryogenic T continue

10

NED: Nb hydrides precipitation in all cutouts, amount and/or size of Nb hydrides is different

EP at 94K EP+120C baked at 94K

Nb hydrides

Nb hydrides

Page 11: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Other treatments show Nb hydrides precipitationAnnealing at 800C˚ for 3h+BCP

β β β β

_ ε_ ε

β β β β

β β β β

β β β β

_ ε_ ε_ ε_ ε_ ε_ ε_ ε_ ε_ _ _ _

ε_ εε

_ ε ε ε

ε ε εε

ε ε εε

ε ε εε

ε ε εε

ε ε εε

ε ε εε

Annealing at 800C˚ for 3h

Page 12: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

HFQS recipes:EPEP+800C bake+BCPEP+800C bake

large size or large amount of Nb hydrides at 94K

=

HFQS-free recipe:EP+120C bake

Cause of HFQS

12

small/widely spread Nb hydrides at 94K=

Page 13: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Grain boundaries in EP and EP+120C baked

13

grain 1 grain 2

SEM image of GBPt layer

Nb2O5

HRTEM image of GB

Page 14: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

EELS study of Nb oxides in EP and EP+120C baked cavities

14

120x103

100

80

60

40

20

0

cou

nts,

arb

. uni

ts

395390385380375370365360355 energy loss, eV

region 1 region 2 region 3 region 4

Nb

Nb oxides

Pt layer

STEM Z-contrast image

Oxygen inward diffusion during the bake

EELS Nb M2,3 edge

EP+120C

EP1

23

4

Page 15: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Nb hydrides in N-doped cavity cutouts and samples

15

• Nb hydrides do precipitate in N doped cavities and samples!

Most of the probed area is affected by hydride precipitation in quench spot.

• Do Nb hydrides cause quench in N doped cavities?

Cryogenic temperature structural characterization of non-dissipating spot is needed.

More about N doped cavities in MOPB055

Quench Spot at 94K

baked with N @800C + 5 μm EP

?

Page 16: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Conclusions

16

• Combination of T-dependent macro- and microscopic characterization revealed precipitation of Nb hydrides in the state-of-the-art SRF resonators for the 1st time;

• We showed that micro- and nanoscopic characterization gives a valuable insight into mechanisms that governs the performance of SC cavities;

• Routine use of micro- and nanoscopic characterization for the development of new SC materials and treatments for the SRF cavities.

Page 17: Yulia Trenikhina SRF-15

Yulia Trenikhina SRF’15 Whistler, Canada

Microscopic characterization for new materials/treatments

17

We are working on: Nb3Sn coating of Nb cavities with Cornell

Nb3Sn coated Nb cavity: SEM/EDX on cavity cutouts

More about Nb3Sn in Sam Posen’s posters TUPB048, TUPB049 and

Yulia’s poster TUPB056.

Thanks for your attention!