41
Zebo Tang, 高高高高高高高 1 10/10/2009 唐唐唐 高高高高高高高高高高高高高 唐唐唐唐唐唐唐唐唐 J/ 唐唐唐 Introduction J/ production at low p T J/ production at high p T

Zebo Tang, 高能核物理导论 1 10/10/2009 唐泽波 中国科学技术大学近代物理系 相对论重离子碰撞中 J/ 的产生 Introduction J/ production at low p T J/ production

  • View
    414

  • Download
    24

Embed Size (px)

Citation preview

Zebo Tang, 高能核物理导论 110/10/2009

唐泽波中国科学技术大学近代物理系

相对论重离子碰撞中J/的产生

• Introduction

• J/ production at low pT

• J/ production at high pT

Zebo Tang, 高能核物理导论 210/10/2009

Discovery of J/

PRL33, 1404-1406 (1974) PRL33, 1406-1408 (1974)

Zebo Tang, 高能核物理导论 310/10/2009

Features of J/

cc bound state, r~0.4 fmMass=3.097 GeV/c2, Width=93.2 keV/c2

Zebo Tang, 高能核物理导论 410/10/2009

Charmonium production mechanism

NRQCD

Color singlet

Color octet

Color singlet model (CSM), LO

underpredicted CDF data by order of magnitude

Color octet model (COM), LO

good agreement with CDF cross section

disagreement with CDF polarization

LO

Know your reference!LO CSM LO COM

J/ 3S1

J/

CDF measurement: PRL79,572

Zebo Tang, 高能核物理导论 510/10/2009

Charmonium production mechanism

NRQCD

Color singlet

Color octet

Color singlet model (CSM), LO

underpredicted CDF data by order of magnitude

Color octet model (COM), LO

good agreement with CDF cross section

disagreement with CDF polarization

CSM*, NLO

better agreement

NNLO* applicable at pT>5-7 GeV/c

COM*

improvement of polarization,

NLO will come, valid at pT>3 GeV/c

Decay feeddown (CDF):

(2s): 7%-15%, slightly increase with pT

c0,1,2: ~30%, slightly decrease with pT

B: Strong pT dependence

LO

Know your reference!

Zebo Tang, 高能核物理导论 610/10/2009

Low pT spectra in p+p

CSM+s-channel cut works well at intermediate pT

Zebo Tang, 高能核物理导论 710/10/2009

High pT spectra in p+p

Significantly extend previous measurements from 5 to 14 GeV/c

CEM, LO COM describe overall trend, leave little to no room for feeddown

NNLO* CSM, steeper than data

STAR Preliminary

Zebo Tang, 高能核物理导论 810/10/2009

xT scaling

n is related to thenumber of point-likeconstituents takingan active role in theinteraction

n=8: diquark scattering

n=4: QED-like scattering

and proton at pT>2 GeV/c: n=6.6±0.1 (PLB 637, 161(2006))

J/ at high pT: n=5.6±0.2 (close to CS+CO prediction)

Soft processes affect low pT J/ production

pT>2 GeV/c

STAR Preliminary

pT>5 GeV/c

Zebo Tang, 高能核物理导论 910/10/2009

PolarizationCesar Luiz da Silva, QM2009

Zebo Tang, 高能核物理导论 1010/10/2009

Feeddown

R(ψ’) =8.6±2.5% PHENIXR(c) <42% (90%C.L.) PHENIX

Susumu X. Oda, QM2008

Zebo Tang, 高能核物理导论 1110/10/2009

Disentangle contributions via Correlations

• J/-hadron correlation can also shed light on different source contribution to J/ production

• CSM vs. COM

1)

no near side correlation

2)

strong near side correlation

g g g /J

g g b b hadron

B X /J X

PLB 200, 380(1988) and PLB 256,112(1991)

Zebo Tang, 高能核物理导论 1210/10/2009

BJ/

No significant near side correlationB contribution (13 5) %Little room for parton fragmentation

STAR PreliminaryarXiv:0904.0439

Zebo Tang, 高能核物理导论 1310/10/2009

Quark Gluon Plasma

Quark Gluon Plasma:

1) Deconfined and

2) Thermalized state of quarks and gluons

Zebo Tang, 高能核物理导论 1410/10/2009

Color screening of heavy quarks

J/ dissociation due to color screening Signature of the QGP formation

Ágnes Mócsy, QM2009

T. Matsui and H. Satz, PLB178, 416 (1986) 23 years story

Zebo Tang, 高能核物理导论 1510/10/2009

Plasma Thermometer

?

Quarkonium dissociation temperatures – Digal, Karsch, Satz

Ágnes Mócsy, QM2009

Zebo Tang, 高能核物理导论 1610/10/2009

J/ suppression in heavy-ion collisions

Peripheral Central

200 AGeV O+U collisions

NA38, PLB220, 471 (1989)

Zebo Tang, 高能核物理导论 1710/10/2009

Nuclear absorption

Inelastic J/ scattering (dissociation) on primordial target and projectile nucleons

suppression of J/

Before the formation of QGP

nothing to do with QGP Cold nuclear matter (CNM) effect

A. Sibirtsev, K. Tsushima and A. W. Thomas, PRC63, 044906

C. Gerschel and J. Hufner, PLB 207, 253 (1988)

Zebo Tang, 高能核物理导论 1810/10/2009

Description of absorption

Fully explained the J/ suppressionNo screening effect?

C. Gerschel and J. Hufner, Z. Phys. C 56, 171 (1992)

Zebo Tang, 高能核物理导论 1910/10/2009

Anomalous J/ suppression

NA50, NPA 610, 404 (1996)

Zebo Tang, 高能核物理导论 2010/10/2009

Anomalous J/ suppression

NA50, Eur. Phys. J. C 39, 335 (2005)

A signal of QGP formation within a “threshold-suppression” scenario

J. P. Blaizot and J. Y. Ollitraut, PRL 77, 1703 (1996)

Zebo Tang, 高能核物理导论 2110/10/2009

Evidence of deconfinementNA 50, PLB 477,28 (2000)

c direct J/

Zebo Tang, 高能核物理导论 2210/10/2009

More CNM effects

Zebo Tang, 高能核物理导论 2310/10/2009

Shadowing/anti-shadowing

P. Amaudruz et al., NPB 441, 3 (1995) S. R. Klein and R. Vogt, PRL 91, 142301 (2003)

Zebo Tang, 高能核物理导论 2410/10/2009

Cronin effect

• Main features:

• pT2 (and T) linearly increase with L

(mean thickness of nuclear matter)

• Phenomenological description with the expression

LpLp gNppTT 22 )(

with an energy dependent pT2pp and

a common slope:gN= 0.081±0.002 (GeV/c)2/fm

Multi-scattering of the incoming gluon

Zebo Tang, 高能核物理导论 2510/10/2009

Hadronic co-mover dissociation

Sergei G. Matinyan and Berndt Muller, PRC 58, 2994 (1998)

S. Gavin, M. Gyulassy and A. Jackson, PLB 207, 257 (1988)R. Vogt, M. Prakash, P. Koch and T. H. Hansson, PLB 207, 263 (1988)

Inelastic J/ scattering (dissociation) on secondary produced hadronic comovers

Suppression of J/ Nothing to do with QGP Another CNM effect

Zebo Tang, 高能核物理导论 2610/10/2009

Parton-induce break-up in QGP

The anomalous suppression depends on our understanding of CNM effects

Zebo Tang, 高能核物理导论 2710/10/2009

Move to higher energy

Zebo Tang, 高能核物理导论 2810/10/2009

J/ suppression at RHIC

• Similar suppression as that at SPS• More suppression at forward rapidity

Global error = 7%Global error = 12%

Scomparin (proc. QM06) : nucl-ex/0703030

GeVsNN 200

Zebo Tang, 高能核物理导论 2910/10/2009

CNM constraints from dAu results

Zebo Tang, 高能核物理导论 3010/10/2009

CNM constraints from dAu results

Mid-rapidity Forward/backward rapidity

Zebo Tang, 高能核物理导论 3110/10/2009

Forward rapidity

high xlow x

Gluon saturation from non-linear gluon interactions for the high density at small x; amplified in a nucleus.

Kharzeev, Levin, Nardi and Tuchin, 2009

Normal CNM descriptions (blue) give similar (or even smaller) suppression at mid vs forward rapidity• but if peaking in “anti-shadowing” region were flat instead (red dashed) then one would get larger suppression for forward rapidity as has been observed in AuAu data

Mike Leitch, WWND 2008

Zebo Tang, 高能核物理导论 3210/10/2009

Mid-rapidityWhy the J/ suppression is similar at RHIC as that at SPS?

1) Regeneration2) Sequential suppression

Zebo Tang, 高能核物理导论 3310/10/2009

Regeneration

Grandchamp, Rapp, BrownPRL 92, 212301 (2004) nucl-ex/0611020

Regeneration models give enhancement that compensates for screening• larger gluon density at RHIC expected to give stronger suppression than SPS• but larger charm production at RHIC gives larger regeneration• very sensitive to poorly known open-charm cross sections• forward rapidity lower than mid due to smaller open-charm density there• expect inherited flow from open charm• regeneration much stronger at the LHC!Issues:• need to know what happens to C & ’ & measure J/ flow• flat forward/mid RAA seems inconsistent with increasing regeneration & screening for more central collisionsMike Leitch, WWND 2008

Zebo Tang, 高能核物理导论 3410/10/2009

J/ elliptic flow

Inherit open charm flow or not? Regeneration?Too early to compare to models, need more statistics

Zebo Tang, 高能核物理导论 3510/10/2009

Sequential suppression

H. Satz, Nucl. Phys. A (783):249-260(2007)

J/ suppression at low pT maybe only from excited stats (’, c) F. Karsch, D. Kharzeev and H. Satz, PLB 637, 75 (2006)

60% from direct J/: not suppressed30% c and 10% ’: dissociated

NA50, EPJ39,335NA60, QM05

Zebo Tang, 高能核物理导论 3610/10/2009

Move to high pT

Zebo Tang, 高能核物理导论 3710/10/2009

Hot-wind dissociation

J/

H. Liu, K. Rajagopal and U.A. WiedemannPRL 98, 182301(2007) and hep-ph/0607062M. Chernicoff, J. A. Garcia, A. Guijosa hep-th/0607089

Possible to observe J/ suppression from directly produced J/ at high pT

Zebo Tang, 高能核物理导论 3810/10/2009

Jet energy lossSTAR: PRL98(2007) 192301

Strong suppress, energy lossSimilar magnitude as light hadrons

PHENIX: PRL98(2007)172301

c/be

hardparton

path length L

Quark

Quark

Zebo Tang, 高能核物理导论 3910/10/2009

Nuclear modification factor RAA

• Consistent with no suppression at high pT: RAA(pT>5 GeV/c) = 1.4± 0.4±0.2

• All RHIC measurements:

RAA(pT>5 GeV/c) = 1.1 ± 0.3 ± 0.2

• Indicates RAA increase from low pT to high pT

• Contrast to AdS/CFT+ Hydro prediction H. Liu, K. Rajagopal and U.A. Wiedemann PRL 98, 182301(2007), T. Gunji, JPG 35, 104137(2008) • How does production mechanism (CS vs. CO) affect energy loss?• Good jobs:

• transport+hydro: from initial produced instead of regenerated Y.Liu, Zhen Qu, N. Xu and P. Zhuang, arXiv:0901.2757; N. Xu, QM2009 • two-component model: leakage and B feeddown is important R. Rapp, X. Zhao, arXiv:0806.1239 Anti-shadowing?

Zebo Tang, 高能核物理导论 4010/10/2009

Upsilon

dAuR 0.98 0.32 (stat.) 0.28 (sys.)

Consistent with Nbin scaling

Cold Nuclear Matter effects

(Shadowing) are not large.

prelim

inary

RAuAu in progress

Zebo Tang, 高能核物理导论 4110/10/2009

Summary

J/ is a unique probe of the hot dense matter produced in heavy-ion collisions

Lots of CNM effects need to be considered

On the way to understand the screening better

As well as J/ production mechanism in hadron collisions