Transcript
Page 1: 高频电子电路设计 小功率调频发射机设计

1

YANGTZE NORMAL UNIVERSITY

高频电子电路设计

小功率调频发射机设计

学习要求

•掌握调频发射机整机电路的设计与调试方法,以及高频电路的调试中常见故障的分析与排除;

•学会如何将高频单元电路组合起来实现满足工程实际要求的整机电路的设计与调试技术。

Page 2: 高频电子电路设计 小功率调频发射机设计

2

YANGTZE NORMAL UNIVERSITY

一、调频发射机及其主要技术指标

1. 组成框图

Page 3: 高频电子电路设计 小功率调频发射机设计

3

YANGTZE NORMAL UNIVERSITY一、调频发射机及其主要技术指标

2. 主要技术指标

发射功率 一般是指发射机输送到天线上的功率。

总效率 发射机发射的总功率 与其消耗的总功 率 P’C 之比,称为发射

机的总效率 。 非线性失真 要求调频发射机的非线性失真系数 应小 于 1 %。 杂音电平 – 杂音电平应小于 65 dB。

AP

A

工作频率或波段 发射机的工作频率应根据调制方式,在国家或有关部门所规定的范围内选取。

Page 4: 高频电子电路设计 小功率调频发射机设计

4

YANGTZE NORMAL UNIVERSITY

二、单元电路设计与调试

整机电路的设计计算顺序一般是从末级单元电路开始,向前逐级进行。而电路的装调顺序一般从前级单元电路开始,向后逐级进行。

Page 5: 高频电子电路设计 小功率调频发射机设计

5

YANGTZE NORMAL UNIVERSITY1-1、 LC正弦波振荡器

RB2

VQ

RB1C1

+VCC

L1

C

C2

C3

E

B

CBRE

T

RC

D Cc

C4

A

L2

C5 C6

DC

R3

R2

R1

v

LC振荡器 调频电路

**

其中,晶体管T、 L1、 C1、 C2、 C3组成电容三点式振荡器的改进

型电路 即克拉泼电路,接成共基组态, CB为基极耦合电容,其静态工作点由RB1、 RB2、 RE及 RC所决

定, 即由公式( 4-2-1)~( 4-2-4)决

定。

ICQ一般为 (1~4)mA。 ICQ

偏大,振荡幅度增加,但波形失真加重,频率稳定性变差。L1、 C1与 C2、 C3组成并联谐振回路,其中 C3两端的电压构成振荡器的反馈电压,以满足相位平衡条

件 =2n。

比值 C2/C3=F,决定反馈电压的大小,反馈系数 F一般取 1/8~1/2。

为减小晶体管的极间电容对回路振荡频率的影响, C2、 C3的取值要大。 如果选C1<<C2, C1<<C3,则回路的谐振频率 fo主要由 C1决定,即

11

oπ2

1

CLf

Page 6: 高频电子电路设计 小功率调频发射机设计

6

YANGTZE NORMAL UNIVERSITY1-2、变容二极管调频

RB2

VQ

RB1C1

+VCC

L1

C

C2

C3

E

B

CBRE

T

RC

D Cc

C4

A

L2

C5 C6

DC

R3

R2

R1

v

LC振荡器 调频电路

**

调频电路由变容二极管 DC及耦合电容 Cc组成,

R1与 R2为变容二极管提供静态时的反向直流偏置电压 VQ,电阻 R3称为隔离电阻,常取

R3>>R2, R3>>R1,以减小调制信号 vΩ对 VQ

的影响。

C5与高频扼流圈 L2给vΩ提供通路, C6起高频滤波作用。变容二极管 DC通过 Cc部分接入振荡回路,有利于提高主振频率 fo的稳定性,减小调制失真。

图 4.2.2为变容二极管部分接入振荡回路的等效电

路,

接入系数 p及回路总电容C分别为

Cc

Cj

C1L1

jc

c

CC

Cp

jc

jc1 CC

CCCC

C j

Page 7: 高频电子电路设计 小功率调频发射机设计

7

YANGTZE NORMAL UNIVERSITY

变容二极管的 Cj-v 特性曲线

图 4.2.3 变容二极管的 Cj-v特性曲线

变容二极管的 Cj-v 特性曲线如图4.2.3 所示。设电路工作在线性调制状态,在静态工作点 Q处,曲线的斜率为

VCk ΔΔC

Page 8: 高频电子电路设计 小功率调频发射机设计

8

YANGTZE NORMAL UNIVERSITY1-3 、 LC调频振荡器主要性能参数及其

测试方法

主振频率 LC振荡器的输出频率 fo称为主振频率或载波频率。用数字频率计测量回路的谐振频率 fo,高频电压表测量谐振电压 vo,示波器监测振荡波形。 频率稳定度 主振频率 fo的相对稳定性用频率稳定 度表示。

小时/o

minmaxoo f

ffff

最大频偏 指在一定的调制电压作用下所能达到的最大频率偏移值。将 称为相对频偏。

om ff

Page 9: 高频电子电路设计 小功率调频发射机设计

9

YANGTZE NORMAL UNIVERSITY

变容二极管特性曲线 特性曲线 Cj-v 如图 4.2.3示。 性能参数 VQ、 Cj0、 及 Q点处的斜率 kc等可以通过 Cj-v 特性曲线估算。

jC

图 4.2.4是变容二极管 2CC1C的Cj-v 曲线。由图可得

VQ= –4V时

CQ=75pF,

Page 10: 高频电子电路设计 小功率调频发射机设计

10

YANGTZE NORMAL UNIVERSITY

调制灵敏度 单位调制电压所引起的最大频偏称为调制灵敏度,以 表示,单位为 kHz/V,即fS

m

V

fS f

为调制信号的幅度; 为变容管的结电容变化 时引起的最大频偏。 ∵回路总电容的变化量为

ΩmV mf jC

j2 CpC

在频偏较小时, 与 的关系可采用下面近似公式,即

Qo

m

2

1

C

C

f

f

mf C

∴ p↑- △f ↑ , jC ↑- △f ↑ 。

Page 11: 高频电子电路设计 小功率调频发射机设计

11

YANGTZE NORMAL UNIVERSITY

为静态时谐振回路的总电容, 即

QC

QC

QC1Q CC

CCCC

∴ C1↓- ↑ - △f↑

调制灵敏度 mΩQ

o

2 V

C

C

fS f

为回路总电容的变化量;C式中,

调制灵敏度 可以由变容二极管Cj-v 特性曲线上 VQ处的斜率 kc及式 (4-2-15)计算。 越大,说明调制信号的控制作用越强,产生的频偏越大。

fSfS

fS

Page 12: 高频电子电路设计 小功率调频发射机设计

12

YANGTZE NORMAL UNIVERSITY 1-4、设计举例

例 设计一 LC高频振荡器与变容二极管调频电路。

kHz10m f

振荡器的静态工作点取 , ,测得三极管的

由式 (4-2-1) ~ 式 (4-2-4) 计算出各电阻值。

V6CEQ V

60 。

mA2CQ I

主要技术指标 主振频率 fo =5MHz,频率稳定度≤ 5×10–4/小时,主振级的输出电压 Vo≥1V,最大频偏 。

已知条件 +VCC = +12V ,高频三极管3DG100 ,变容二极管2CC1C。

(1) 确定电路形式,设置静态工作点

Page 13: 高频电子电路设计 小功率调频发射机设计

13

YANGTZE NORMAL UNIVERSITY

(2) 计算主振回路元件值

由式 (4-2-5)得 ,若取 C1=100pF,则L1≈10H

实验中可适当调整 L1的圈数或 C1的值。

11

oπ2

1

CLf

电容C2、 C3由反馈系数 F 及电路条件 C1<<C2, C1<<C3

所决

定 , 若 取 C2=510 pF , 由 ,则

取 C3=3000 pF,取耦合电容 Cb=0.01F。

2/1~8/1/ 32 CCF

Page 14: 高频电子电路设计 小功率调频发射机设计

14

YANGTZE NORMAL UNIVERSITY

 

(3) 测变容二极管的 Cj-v 特性曲线,设置变容管的静态工 作点 VQ

本题给定变容二极管的型号为 2CC1C ,已测量

出其 Cj-v 曲线如图 4.2.4所示。取变容管静态反向

偏压 VQ=4V,由特性曲线可得变容管的静态电容

CQ=75pF。

Page 15: 高频电子电路设计 小功率调频发射机设计

15

YANGTZE NORMAL UNIVERSITY

(4) 计算调频电路元件值

变容管的静态反向偏压 VQ由电阻 R1与 R2分压决定,

已知 VQ=4V ,若取 R2=10k , 隔离电阻R3=150kΩ。

k201R

为减小振荡回路高频电压对变容管的影响, 应取小,

但 过小又会使频偏达不到指标要求。可以先 取 ,然后在实验中调试。当 VQ=- 4V时,对应

CQ=75pF,

则 CC 18.8 pf .

)( jcc CCCp

p

2.0p

取标称值 20pF

p

Page 16: 高频电子电路设计 小功率调频发射机设计

16

YANGTZE NORMAL UNIVERSITY

(5) 计算调制信号的幅度

为达到最大频偏 的要求,调制信号的幅度 VΩm,可由下列关系式求出。由式 (4-2-14) 得

mf

Qom 2

1

C

Cff

由 Cj-v 曲线得变容管 2CC1C 在 VQ= – 4V 处的斜率

5.12jC VCk pF/V, 由式 (4-2-9) 得调制信号的幅度

VΩm=ΔCj / kc= 0.92V。

由式 (4-2-12) 得调制灵敏度 Sf

9.10mm VfS f kHz/V

Page 17: 高频电子电路设计 小功率调频发射机设计

17

YANGTZE NORMAL UNIVERSITY1-5 、调频振荡器的装调与测试

A。安装要点

电路元件不要排得太松,引线尽量不要平行,否 则会引起寄生反馈。

多级放大器应排成一条直线,尽量减小末级与前级之间的耦合。

地线应尽可能粗,以减小分布电感引起的高频损耗 。 为减小电源内阻形成的寄生反馈,应采用滤波电容 Cφ 及滤波电感 Lφ组成的 π型或 Γ型滤波电路。

安装时应合理布局,减小分布参数的影响。

Page 18: 高频电子电路设计 小功率调频发射机设计

18

YANGTZE NORMAL UNIVERSITY

b。 测试点选择 正确选择测试点,减小仪器对被测电路的影响。 在高频情况下,测量仪器的输入阻抗 (包含电阻和电容 )及连接电缆的分布参数都有可能影响被测电路的谐振频率及谐振回路的 Q值,为减小这种影响,应使仪器的输入阻抗远大于电路测试点的输出

阻抗。 所有测量仪器如高频电压表、示波器、扫频仪、数字频率计等的地线及输入电缆的地线都要与被测电路的地线连接好,接线尽量短。

Page 19: 高频电子电路设计 小功率调频发射机设计

19

YANGTZE NORMAL UNIVERSITY

C。 调试方法( 1)先调整静态工作点。

( 3 )测量频偏加入幅度为 VΩ的调制信号以后,可以采用频偏仪测量频偏。也可以 用示波器测量 C点的波形,观察波形在 X 方向的相移。

( 2)观测动态波形并测量电路的性能参数。与低频电路的调试基本相同,所不同的是按照理论公式计算的电路参数与实际参数可能相差较大,电路的调试要复杂一些。

Page 20: 高频电子电路设计 小功率调频发射机设计

20

YANGTZE NORMAL UNIVERSITY

2、高频功率放大器设计

利用宽带变压器作耦合回路的功率放大器称为宽带功率放大器。它不需要调谐回路,可在很宽的频率范围内获得线性放大。但效率 较低,一般只有 20%左右。它通常作为发射机的中间级,以提供较大的激励功率。

利用选频网络作为负载回路的功率放大器称为谐振功率放大器。根据放大器电流导通角 θ的范围,可以分为甲类、乙类、丙类和丁类等功率放大器。丙类功放的电流导通角 θ< 90,效率可达到 80%。它通常作为发射机的末级,以获得较大的输出功率和较高的效率。

一、电路的基本原理

Page 21: 高频电子电路设计 小功率调频发射机设计

21

YANGTZE NORMAL UNIVERSITY

2-1、电路的基本原理

C1

RB2

RF

RE1 CE1

T1

L1

N1

N2

Tr1

C10 C11

L10

V i

宽带功率放大器 丙类功率放大器

RE2 CE2

T2

C2 N2

N1

L2 C20 C21

L20

N3RL

-Vo

+VCC

Tr2

RB1*

Vi

晶体管 T1与高频变压器 Tr1组成宽带功率放大器,晶体管 T2与选频网络 L2、 C2组成丙类谐振功率放

器。

Page 22: 高频电子电路设计 小功率调频发射机设计

22

YANGTZE NORMAL UNIVERSITY

1. 宽带功率放大器

(1) 静态工作点

C1

RB2

RF

RE1 CE1

T1

L1

N1

N2

Tr1

C10 C11

L10

V i

宽带功率放大器 丙类功率放大器

RE2 CE2

T2

C2 N2

N1

L2 C20 C21

L20

N3RL

-Vo

+VCC

Tr2

RB1*

Vi

晶体管 T1与RB1、 RB2 、 RE1、 RF

组成的宽带功率放大器工作在甲类状态。其特点是:晶体管工作在线性放大 区。其静态工作点的计算方法与低频电路相同。由关系式 (4-3-1)~(4-3-4)确定。

宽带功率放大器集电极的输出功率 PC为 PC= PH / T

式中, PH为输出负载上的实际功率; T为变压器的传输效率,一般

T = 0.75~0.85。

(2) 高频变压器

Page 23: 高频电子电路设计 小功率调频发射机设计

23

YANGTZE NORMAL UNIVERSITY

1. 宽带功率放大器

图 4.3.2 甲类功放的负载特性

图 4.3.2是宽带功率放大器的负载特性。为获得最大不失真输出功率,静态工作点 Q应选在交流负载线 AB的中点。

集电极的输出功率 PC 的表达式为

H

2Cm

CmCmC 2

1

2

1

R

VIVP

式中, R'H 为集电极等效负载电阻; Vcm为集电极交流电压的振幅,其表达式为

CESE1CQCCCm VRIVV

Page 24: 高频电子电路设计 小功率调频发射机设计

24

YANGTZE NORMAL UNIVERSITY 1. 宽带功率放大器

(3) 功率增益 与电压放大器不同的是,功放应有一定的功率增益,对于图 4.3.1所示电路,宽带功放要为下一级丙类功放提供一定的激励功率,必须将前级输入的信号进行功率放大,功率增益 为

AP=PC / Pi

式中, Pi为功放的输入功率,它与功放的输入电压 Vim

及输入电阻 Ri的关系为

iiim 2 PRV

Page 25: 高频电子电路设计 小功率调频发射机设计

25

YANGTZE NORMAL UNIVERSITY

2. 丙类功率放大器

(1) 基本关系式

C1

RB2

RF

RE1 CE1

T1

L1

N1

N2

Tr1

C10 C11

L10

V i

宽带功率放大器 丙类功率放大器

RE2 CE2

T2

C2 N2

N1

L2 C20 C21

L20

N3RL

-Vo

+VCC

Tr2

RB1*

Vi

丙类功放的基极偏置电压– VBE是利用发射极电流的直流分量 IE0(IE0Ic0)在射极电阻 RE2上产生的压降来提供的,故称为自给偏压电路。

当放大器的输入信号 vi

为正弦波时,集电极的输出电流 iC 为余弦脉冲波。利用谐振回路 L2C2

的选频作用可输出基波谐振电压 vC1、电流 iC1。

集电极基波电压的振幅

pC1mC1m RIV

式中, IC1m 为集电极基波电流的振幅; Rp

为集电极负载阻抗。

Page 26: 高频电子电路设计 小功率调频发射机设计

26

YANGTZE NORMAL UNIVERSITY 2. 丙类功率放大器

集电极输出功率

p

2C1m

p2C1mC1mC1mC 2

1

2

1

2

1

R

VRIIVP

直流电源 VCC供给的直流功率

C0CCD IVP

式中, IC0 为集电极电流脉冲 iC 的直流分量。电流脉冲 iC 经傅立叶级数分解,可得峰值 与分解系数 n(θ)的关系式

CmI

Page 27: 高频电子电路设计 小功率调频发射机设计

27

YANGTZE NORMAL UNIVERSITY 2. 丙类功率放大器

)(

)(/

0CmC0

1C1mCm

II

II 分解系数 n(θ) 与 θ 的关系如图 4.3.3所示。

α2( θ)的值,

在 θ= 60o 时最大,即二次谐波的电流脉冲 Icm2 为 最大值,而且效率 η也比较高。

Page 28: 高频电子电路设计 小功率调频发射机设计

28

YANGTZE NORMAL UNIVERSITY 2. 丙类功率放大器

图 4.3.4为功放管输入电压 VBE与集电极电流脉冲 iC的波形关系。 由图可得:

Bm

Bjcos

V

VV

式中 , Vj 为晶体管导通电压 ( 硅管约0.6V ,锗管约0.3V); VBm 为输入电压( 或激励电压 ) 的振幅;VB为基极直流偏压。

VB = -IC0 • RE

当输入电压 VBE大于导通电压 时,晶体管导通,并工作在放大状态,则基极电流脉冲 与集电极电流脉 成线性关系,即满足

BmICmI

jV

BmBmfeCm IIhI

Page 29: 高频电子电路设计 小功率调频发射机设计

29

YANGTZE NORMAL UNIVERSITY 2. 丙类功率放大器

功放的功率增益

i

o

P

PAp 或

dBlg10

i

o

P

PAP

如图 4.3.1所示,丙类功放的输出回路采用变压器耦合方式。其作用一是实现阻抗匹配,将集电极的输出功率送至负载;二是与谐振回路配合,滤除谐波分量。

集电极谐振回路为部分接入,谐振频率

LC

1o 或

LCf

π2

1o

Page 30: 高频电子电路设计 小功率调频发射机设计

30

YANGTZE NORMAL UNIVERSITY 2. 丙类功率放大器

(2) 负载特性 当功放处于临界工作状态 A点时,管子的集电极电压正好等于管子的饱和压降 VCES,集电极电流脉冲接近最大值ICm。此时集电极输出的功率 PC和效率 都较高,对应的等效负载电阻

C

2CESCC

q 2

)(

P

VVR

判断功放是否为临界工作状态的条件是:

Vcc-Vcm=Vces

Page 31: 高频电子电路设计 小功率调频发射机设计

31

YANGTZE NORMAL UNIVERSITY

2-2、高频变压器的绕制

高频变压器的磁芯应采用镍锌 (NXO)铁氧体,当用 NXO-100 环形铁氧体作高频变压器磁芯时,工作频率可达十几兆赫。其结构如图4.3.6所示,尺寸为外径 ×内径 ×高度,电感量 L由下式计算 [2]:

322 10π4 Nl

AL (4-3-30)

绕制高频变压器的漆包线一 般 选 用 线 径 为 0.31mm的漆包线。为减小线圈漏感与分布电容

的影响,匝数 应尽可能少,匝间距离尽可能大(绕稀一些,并绕得紧一些)。

Page 32: 高频电子电路设计 小功率调频发射机设计

32

YANGTZE NORMAL UNIVERSITY

2-3、主要技术指标及实验测试方法

输出功率 高频功放的输出功率是指放大器的负载 RL

上得到的最大不失真功率。也就是集电极的输出功率,即

0

2C1m

02ClmClmClmo 2

1

2

1

2

1

R

VRIIVP

效率 常将集电极的效率视为高频功放的效率,用表示,当集电极回路谐振时,的值由下式计算:

功率增益 功放的输出功率 Po与输入功率 Pi 之比称为功率增益,用 AP( 单位: dB) 表示 ( 见式 4-3-10)。

CCC0

L2

L

D

C

VI

RV

P

P

Page 33: 高频电子电路设计 小功率调频发射机设计

33

YANGTZE NORMAL UNIVERSITY 2-4 、主要技术指标及实验测试方法

~

CE

-Vb

Vs

发生器

高频信号

功率激励级

0.01F

RE

RF

E

示波器监测点

mA

V 高频电压表

高频扼流圈

IC0直流毫安表

+VCC

CL RL

高频功放的测试电路

高频信号发生器提供激励信号电压与谐振频率

示波器监测 波形失真

直流毫安表mA测量集电

极的直流电流

高频电压表V测量负载RL 的端电压

在集电极回路处于谐振状态时,放大器的输出

功率可以由下式计算: PO=

RL

VL2

=Vom

2

2RL

Page 34: 高频电子电路设计 小功率调频发射机设计

34

YANGTZE NORMAL UNIVERSITY 2-5、设计举例

( P145) 例 设计一高频功放。

MHz50 f

已知条件 +VCC = +12V,晶体管3 DG130 ,晶体 管3DA1 。

主要技术指标 输出功率 Po≥500mW,工作中心频

率 ,效率 η>50% ,负载 RL=51Ω。

Page 35: 高频电子电路设计 小功率调频发射机设计

35

YANGTZE NORMAL UNIVERSITY

2-6、高频谐振功率放大器的调整

1. 谐振状态的调整当出现回路 失谐 状态 时,回路的等效阻抗将下降。这时集电极电压减小,集电极电流增大,集电极的耗散功率增加,严重时将损坏晶体管。

3

1~

2

1CCV

CCV为保证晶体管安全工作,调谐时,可以先将电源电压

降低到规定值的 ,待找到谐振点后,再 将

升到规定值,然后微调回路参数。如图 4.3.7所示,在回路谐振时,高频电压表的读数应达到最大值,直流毫安表的读数为最小值,示波器监测的波形为不失真基波。

Page 36: 高频电子电路设计 小功率调频发射机设计

36

YANGTZE NORMAL UNIVERSITY2-6、高频谐振功率放大器的调整

2. 寄生振荡及其消除(1) 参量自激型寄生振荡

当功放的输出电压 足够大时,晶体管的许多参数 (如集电结电容 )将随着工作状态的变化而变化,产生许多新的频率分量存在于晶体管的输出和输入端,而形成自激振荡。图 (a) 为 1/2基波的影响,图 (b) 为 3倍频的影响。

CmV

cbC

参量自激的特点是:必须在外加信号激励下才产生,因此断开激励信号观察振荡是否继续存在,是判断自激型寄生振荡的有效方法。参量寄生振荡使输出电压的峰值可能显著增加 (比正常值大 5倍~ 6倍 ) ,回路可能处于失谐状态,集电极的耗散功率会很大,有可能导致晶体管损坏。

消除参量寄生振荡的常用办法是:在基极或发射极接入防振电阻 (几欧姆至几十欧姆 ),或引入适当的高频电压负反馈,或降低回路的 QL值,如果可能的话,减小激励信号电平。

Page 37: 高频电子电路设计 小功率调频发射机设计

37

YANGTZE NORMAL UNIVERSITY

2-7、高频谐振功率放大器的调整

(2) 反馈型寄生振荡

反馈型寄生振荡又分为低频寄生振荡与高频或超高频寄生振荡。图 4.3.10 分别为叠加有低频自激与高频自激信号的输出波形。

低频寄生振荡一般是由功放输入输出回路中的分布电容引起的。 消除低频寄生振荡的办法是设法破坏它的正反馈支路,例如减少基极回路线圈的电感量或串入电阻 RF,降低线圈的 Q值。

高频寄生振荡一般是由电路的分布参数 (分布电容、引线电感等 )的影响所造成的。例如引线较长时,其产生的分布电感 (使放大器原有的电感相当于开路 )与电路中的分布电容构成了振荡回路。

消除高频寄生振荡的有效办法是:尽量减少引线的长度、合理布局元器件或在基极回路接入防振电阻。

Page 38: 高频电子电路设计 小功率调频发射机设计

38

YANGTZE NORMAL UNIVERSITY

三、整机设计举例

V12CC V

mW500A P

51LR

kHz10m f %50A

例 设计一小功率调频发射机

已知 ,晶体管3DG100, = 60。 主要技术指标 发射功率 , 负载电阻

(天线 ) , 工作中心频率 f0=5 MHz ,

最大频偏 ,总效率 。

Page 39: 高频电子电路设计 小功率调频发射机设计

39

YANGTZE NORMAL UNIVERSITY 三、整机设计举例

调制信号

缓冲隔离LC振荡与调频

1.25mW

0dB

1.25mW

13dB

25mW

13dB

500mW功率激励 末级功放

LC振荡与调频电路 产生频率 的高频 振荡信号。变容二极管线性调频,最大频偏

。发射机的频率稳定度由该级决定。

MHz50 f

kHz10m f

缓冲隔离级 将振荡级与功放级隔离,以减小功放级对振荡级的影响。缓冲隔离级常采用射极跟随器电路。

末级功放 将前级送来的信号进行功率放大,使负载 (天线 )上获得满足要求的发射功率。如果要求整机效率较高,则应采用丙类功率放大器

功率激励级 为末级功放提供激励功率。如果发射功率不大,且振荡级的输出功率能够满足末级功放的输入要求,则功率激励级可以省去。

(2) 增益分配

功率增益 如果集中在末级功放,则电路性能不稳,容易产生自激。因此要根据发射机各组成部分的作用,合理地分配功率增益。缓冲级可以不分配功率增益。设各级功率增益如图 4.4.2 所示。

(1) 拟定发射机的组成方框图

Page 40: 高频电子电路设计 小功率调频发射机设计

40

YANGTZE NORMAL UNIVERSITY 四、整机 电路的装调与测试R

4 1

k

28k

R2

8.2

k

R1R3

T1

C1

0.0

1 F

510pF

C3

2000pF

C4

C5

33pF

C620pF

4.7F

C8

510

0pF

10k

DC

150kR5

20kR6

R11*

47H

2k

C2

100pF

L1

10H

47H

C7

+ R7

2CC1C

8kR8

R9

R10

1k 0.047F

RP1

1k

R12

3k

R14360

R13

5

C10

3DG100

C9

T3

3DA1

8.2k

6T 2T

C11

0.01F2

47H

+12V

2T

3T2T

51RL

3DG130

20R15 C12

0.022F

L2

3DG100

10k

0.01F

0.01F2

*

*

*

T2

T4

*

330pF

v

LC 正弦波振荡电路

变容二极管调频电路 缓冲隔离级 通过调节发射极电RP1, 可以改变射极跟随器的输入阻抗 。

宽带功率放大器丙类功率放大器

Page 41: 高频电子电路设计 小功率调频发射机设计

41

YANGTZE NORMAL UNIVERSITY 四、整机 电路的装调与测试

电路的调试顺序为: 先分级调整单元电路的静态工作点, 测量其性能参数;然后再逐级进行联调,直到整机调试;最后进行整机技术指标测试。

由于功放运用的是折线分析方法,其理论计算为近似值。此外单元电路的设计计算没有考虑实际电路中分布参数的影响,级间的相互影响,所以电路的实际工作状态与理论工作状态相差较大,因而元件参数在整机调整过程中,修改比较大,这是在高频电路整机调试中需要特别注意的。

Page 42: 高频电子电路设计 小功率调频发射机设计

42

YANGTZE NORMAL UNIVERSITY 四、整机 电路的装调与测试

1. 调频振荡级与缓冲级相联时的常见故障

调频振荡级与缓冲级相联时,可能出现振荡级的输出电压幅度明显减小或波形失真变大。产生的主要原因可能是射随器的输入阻抗不够大,使振荡级的输出负载加重,可通过改变射极电阻 RP1 ,提高射随器的输入阻抗 ( 见图4.4.4)。

2. 功放级与前级级联时的常见故障

整机联调时常见故障分析

输出功率明显减小,波形失真增大 产生的原因可能是级间相互影响,使末级丙类功放谐振回路的

阻抗发生变化,可以重新调谐,使回路谐振。

主振级的振荡频率改变或停振 产生的原因可能是后级功放的输出信号较强,经公共地线、电源线或连接导线耦合至主振级,从而改变了振荡回路的参数或主振级的工作状态。可以加电源去耦滤波网络,修改振荡回路参数,或重新布线,减小级间相互耦合。

Page 43: 高频电子电路设计 小功率调频发射机设计

43

YANGTZE NORMAL UNIVERSITYf m的测试:用示波器测试

波形相移可反映频偏大小: 设 f m= 20KHz, fo= 6.5MHz

即 fo(t)---( 6.48MHz, 6.52MHz)总相移= 2* f m*2= 80K 每个周期相移 = /6.5M=( 4/325 ) 若观察第 20个周期波形,相移= 20* = 0.25

可通过此法判断 f m是否达到指标。

Page 44: 高频电子电路设计 小功率调频发射机设计

44

YANGTZE NORMAL UNIVERSITY

五、设计任务

设计课题:小功率调频发射机设计 主要技术指标要求

发射功率 PA=100mW,

负载电阻 RL=75Ω , 整机效率 ηA>50%,

振荡器的振荡频率 .5 MHz,

发射机工作频率 MHz,

调制信号幅度 V 时,最大频偏 kHz。

已知条件 见本章第一节之三和第三节之五

6o f

130 f

1Ωm V 20m f


Recommended