Transcript

β- Lactam Antibiotics Renaissance Wenling Qin ,Mauro Panunzio and Stefano Biondi Antibiotics 2014, 3, 193-215

Presented byNeeraj Chauhan

M.Sc 2nd yearDMBT

AntibioticsAn antibiotic is an agent that either kills or inhibits the

growth of a microorganism

Classification of Antibiotics

Based on mode of Action

Cell Wall Synthesis

Protein Synthesis

DNA Synthesis

RNA synthesis

Based on their spectrum of action

Broad-spectrum

Narrow Spectrum

Types of AntibioticsAntibioticsBeta-Lactams

Macrolides

Fluoroquinolones

Tetracyclines

Aminoglycosides

β-lactam antibioticsContain β-lactam ring

β-lactam (beta-lactam) ring is a four-membered lactam Active against both Gram positive and Gram negative

pathogens 

Includes penicillin derivatives (penams), cephalosporins (cephems), monobactams, and carbapenems

β-lactam ring

N

O

Adverse effectsAdverse drug reactionsdiarrhea, nausea, rash, urticaria, superinfection (including candidiasis) fever, vomiting, erythema, dermatitis, angioedemaPain and inflammation at the injection site also common

Allergy/hypersensitivityurticaria, anaphylaxis, interstitial nephritis

Mode of action:β-lactams disrupt the synthesis of  bacterial cell wall 

mimic the structure of D-Ala-D-Ala link bind to the active site of PBPs

PBP recognise the D-Ala-D-Ala sequence of the NAMA peptide side chain

disrupt the cross-linking process.

Mechanism of β-Lactam Drugs

N

O

RS

Me

Me

COOHSER

OH

H

N

RS

Me

Me

COOHSER

O

H

O

HN

RS

Me

Me

COOHSER

O

O

The PBP is now covalently bound by the drug and cannot perform the cross linking action

The tetrahedral intermediate collapses, the amide bond is broken, and the nitrogen is reduced

The hydroxyl attacks the amide and forms a tetrahedral intermediate

Beta–lactam Resistance

β-lactamaseChanges in active site of PBPs 

Decreased expression of 

outer membrane proteins (OMPs)

Efflux pumps

β-LactamasesProvide resistance to β-lactam antibiotics

Hydrolyze β-lactam ringdeactivate drug

Especially prevalent in Gram (-) bacteria.

To counter bacterial resistance, there is a need of development of new antibiotics

In particular, two types of strains have led to the need for developing new drugs:

multidrug-resistant strains (MDR) extremely drug-resistant strains (XDR)

In antibiotic development ,novel β-lactam antibiotics or β-lactamase inhibitors play a significant role

Avenues: Identify novel β-lactams Identify novel β-lactamase inhibitors

β-Lactamase InhibitorsUsed in conjunction with β-Lactam antibioticsExamples:

Clavulanic acid+ amoxicillin or ticarcillin Sulbactam + ampicillin or cefoperazone Tazobactam + piperacillin

Efficacy against β-lactamases class A β-lactamases- effective class C enzymes- less effective  class B and most class D enzymes- inactive

Avibactam, MK-7655, MK-8712, and RPX7009 Able to inhibit class A and C β-lactamases, such. Among these, only avibactam and MK-7655 are under development

Sulbactam

Combinations of β-lactam antibiotics and β-lactamase inhibitors Commercially available

(i) Amoxicillin-clavulanate. first β-lactam-β-lactamase inhibitor combination  introduced in 1981 in the United Kingdom and in 1984 in the United 

States, and  only combination available for oral use.  Amoxicillin active against streptococci, enterococci, E. coli, and Listeria 

spp Addition of clavulanate expands amoxicillin's spectrum 

penicillinase-producing S. aureus, H. influenzae, Moraxella catarrhalis, Bacteroides spp., N. gonorrhoeae, E. coli, Klebsiella spp., and P. mirabilis

an oral equivalent of ampicillin-sulbactam or ticarcillin-clavulanate in the treatment of skin, soft tissue, abdominal infections.

 Intravenous formulations of amoxicillin-clavulanate available in Europe

(ii) Ticarcillin-clavulanate Introduced in 1985 first combination for parenteral administration.  ticarcillin effective against non-β-lactamase-producing

 Haemophilus spp., E. coli, Proteus spp., Enterobacter spp., Morganella spp., Providencia spp., and P. aeruginosa. 

ticarcillin + clavulanate increase activity against  β-lactamase-producing staphylococci, E. coli, H. influenzae, Klebsiella spp., 

Proteus spp., Pseudomonas spp., Providencia spp., N. gonorrhoeae, Moraxella catarrhalis, and Bacteroides spp

Exhibits activity against multidrug-resistant

(iii) Ampicillin-sulbactam. Ampicillin activity against Streptococci, Enterococci, Listeria spp., and strains of S. aureus, H.

influenzae, E. coli, P. mirabilis, Salmonella spp., and Shigella spp. that are devoid of β-lactamases 

In combination with sulbactam, the activity extends to β-lactamase-containing S. aureus, H. influenzae, M. catarrhalis, E. coli, Proteus spp., Klebsiella spp., and anaerobes 

combination of ampicillin at 2.0 g + sulbactam at 1.0 g  ideal therapy for polymicrobial infections such as abdominal and 

gynecological surgical infections, aspiration pneumonia, odontogenic abscesses, and diabetic foot infections. 

Unfortunately, the resistance to ampicillin-sulbactam among clinical isolates of E. coli is increasing

(iv) Piperacillin-tazobactam. Introduced in United States in 1993 Piperacillin broad-spectrum penicillin that is bactericidal against many Gram-

positive and Gram-negative aerobes and anaerobes Piperacillin demonstrates activity against P. aeruginosa, pneumococci, streptococci, 

anaerobes, and Enterococcus faecalis, and this activity is retained in combination with tazobactam .

Tazobactam extend piperacillin's activity  β-lactamase producing strains of Enterobacteriaceae, H. influenzae, N.

gonorrhoeae, and M. catarrhalis and has the potential to lower MICs against these strains expressing ESBLs

 CXA-101 (Zerbaxa)  ceftolozane + tazobactam  Ceftolozane- cephalosporin 

Active against MDR P. aeruginosa  Have enhanced affinity for the PBPs Stable to β-lactamase AmpCs

Tazobactam- sulfone penam β-lactamase inhibitor Restore susceptibility of 

93% of ESBL producers  95%  of the AmpC producer

Used to treat cUTI, including kidney infection (pyelonephritis). Used with metronidazole to treat cIAI Dosage-

1.5 g  (1 g/0.5 g) every 8 hours  intravenous  in patients 18 years or older .

CAZ104 (AVYCAZ) Ceftazidime +  avibactam Ceftazidime 

third-generation cephalosporin  good activity against Gram-negative pathogens

Avibactam Inhibits class A β-lactamases;including ESBLs and KPCs  less active against AmpCs Inactive towards metallo-β-lactamases

For treatment of cUTI including pyelonephritis caused by:   Escherichia coli, Klebsiella pneumoniae, Citrobacter koseri, Enterobacter aerogenes, 

Enterobacter cloacae, Citrobacter freundii, Proteus spp. and Pseudomonas aeruginosa.

Dosage  2.5g (2g ceftazidime and 0.5g avibactam) given every eight hours intravenous  for 5 to 14 days. 

side effects include vomiting, nausea, constipation and anxiety.

CEFTAZIDIME

AVIBACTAM

β-Lactam and β- Lactamase Inhibitors and their

combinations in development

Novel β- Lactam Antibiotics

Antibiotic approved since 2000

Conclusions β-lactam antibiotics 

play important role in treatment of multidrug resistant pathogensWidely prescribed because of efficacy and safety profile

Interest for novel β-lactam antibiotics or β-lactamase inhibitors has boosted

Goal is to achieve antibacterial efficacy against multidrug resistant pathogens. 

Two new families of β-lactamase inhibitors emerge Diazabicycooctanes (DBOs) and boronic acids

Combine with cephalosporins and carbapenems  show activity against β-lactamase-producing Gram-negative bacteria

Inhibitors against class A (ESBL, KPC), class D (OXA) and class B (NDM) β-lactamases require


Recommended