. ' ,
2 8 8 8
- 2015 - 2
Rolle
10( ) -
)37((((((((
.
( 1 - 4)
' 2.
.
, .
4 , 2010.
( 5 - 10)
:
37
.
. , .
6. Rolle.
- www.mathsteki.gr
- 1 -
1. f :! ! , , x'x 1, 2, 3. , , (1,3) , f () = 0 .
2. f :! ! , , f (0) =1 , f (1) = e f (2) = e
2 . , , g(x) = f (x)e
x + x 23x .
) , , C
g
(0,2) , Cg .
) , , (0,2) , f ()+ 2 = e .
3. f :! ! , . f x'x x1 x2 , x1 < x2 . , , ! , f
(3)() = 0 .
4. f : [1,3] ! , , f (1) = 2 , f (2) = n(2e
3) f (3) = n(3e4) . :
) g(x) = f (x) nx x - [1,3] .
) , , (1,3) , 2 f () = 1 .
5. f [0,1] , f (0) = 0 . : ) g(x) = f (x)x f (0)[f (1) f (0)]x
2 - Rolle [0,1] .
) , , (0,1) , f (1) f (0) =
12 f () .
6. f, [,] , f () = f () = f () = f () = 0 .
: ) g(x) = e
x [ f (x) f (x)] Rolle [,] .
) , , (,) , f () = f () .
7. f, [,] - (,) ,
f ()f ()
=f ()f ()
f (x) 0 , x ! .
x0 (,) , f (x0) f (x0) = [ f (x0)]2 .
8. , f, ! , f (1) = 1 , f (2) = 4 n2 , f (e) = e
21 .
(1,e) ,
f () =12
+ 2 .
9. f, ! , f (0) = 0 , f () = f () =
2 .
( ,) , f () = 2 .
10. f, ! , f (1) = f (1) = 1 , . (1,1) , f , ( , f ()) :y = 2x 3 .
1. f :! ! , , x'x 1, 2, 3. , , (1,3) , f () = 0 .
C
f x'x 1, 2, 3, f (1) = f (2) = f (3) = 0 .
f ! , f , f , :
f , , ! .
f , , ! .
. f [1,2] , [2,3] .
. f (1,2) , (2,3) .
. f (1) = f (2) = f (3) = 0 . Rolle ,
x1 (1,2) , f (x1) = 0 , x2 (2,3) , f (x2) = 0 .
. f [x1 ,x2 ] .
. f (x1 ,x2) .
. f (x1) = f (x2) = 0 .
Rolle, (x1 ,x2) , (1,3) ,
f () = 0 .
. , .
6. Rolle.
- www.mathsteki.gr
- 4 -
2. f :! ! , , f (0) =1 , f (1) = e f (2) = e
2 . , , g(x) = f (x)e
x + x 23x .
) , , C
g
(0,2) , Cg .
) , , (0,2) , f ()+ 2 = e .
) , , f, ' - , f () = 0 .
, x1 ,x2 (0,2) , g (x1) = g (x2) = 0 .
f ! , f , f , :
f , , ! .
f , , ! .
. g [0,1] , [1,2] .
. g (0,1) , (1,2)
. g(0) = f (0)e0 + 02 3 0 =11 g(0) =2 .
IV. g(1) = f (1)e112 3 1 = ee +13 g(1) =2 .
V. g(2) = f (2)e2 + 22 3 2 = e2 e2 + 46 g(2) =2 .
Rolle ,
x1 (1,2) , g (x1) = 0 , x2 (1,2) , g (x2) = 0 .
) g (x) = f (x)ex + 2x 3 .. g [x1 ,x2 ] .
. g (x1 ,x2) .
. g (x1) = g (x2) = 0 ().
Rolle, (x1 ,x2) , (0,2) ,
g () = 0 (1)
g (x) = f (x)ex + 2 , (1)
f ()e + 2 = 0 f ()+ 2 = e .
. , .
6. Rolle.
- www.mathsteki.gr
- 5 -
3. f :! ! , . f x'x x1 x2 , x1 < x2 . , , ! , f
(3)() = 0 .
C
f x'x x1 ,x2 , f (x1) = f (x1) = f (x2) = f (x2) = 0 .
f ! , f , f , f(3) , :
f , , ! .
f , , ! .
f , , ! .
. f [x1 ,x2 ] .
. f (x1 ,x2) .
. f (x1) = f (x2) = 0 .
Rolle, x0 (x1 ,x2) , f (x0) = 0 .
. f [x1 ,x0 ] , [x0 ,x2 ] .
. f (x1 ,x0) , (x0 ,x2) .
. f (x1) = f (x0) = f (x2) = 0 .
Rolle ,
1 (x1 ,x0) , f (1) = 0 , 2 (x0 ,x2) , f (2) = 0 .
. f [1 ,2 ] .
. f (1 ,2) .
. f (1) = f (2) = 0 .
Rolle, (1 ,2) , f(3)() = 0 .
. , .
6. Rolle.
- www.mathsteki.gr
- 6 -
4. f : [1,3] ! , , f (1) = 2 , f (2) = n(2e
3) f (3) = n(3e4) . :
) g(x) = f (x) nx x - [1,3] .
) , , (1,3) , 2 f () = 1 .
) , , f, ' - , f () = 0 .
, x1 ,x2 (1,3) , g (x1) = g (x2) = 0 .
f [1,3] , f , f , :
f , , [1,3] .
f , , [1,3] .
. g [1,2] , [2,3] .
. g (1,2) , (2,3)
. g(1) = f (1) n11 = 21 g(1) = 1 .
IV. g(2) = f (2) n22 = n2e3 n22 = n2 + ne3 n22 = 32 g(2) = 1 .
V. g(3) = f (3) n33 = n3e4 n33 = n3 + ne 4 3 = 43 g(3) = 1 .
Rolle ,
x1 (1,2) , g (x1) = 0 , x2 (2,3) , g (x2) = 0 .
) g (x) = f (x)
1x1 .
. g [x1 ,x2 ] .
. g (x1 ,x2) .
. g (x1) = g (x2) = 0 , ' ().
Rolle, (x1 ,x2) , (1,3) ,
g () = 0 (1)
g (x) = f (x)+1x 2
, (1)
f ()+
12
= 0 2 f ()+1 = 0 2 f () =1 .
. , .
6. Rolle.
- www.mathsteki.gr
- 7 -
5. f [0,1] , f (0) = 0 . : ) g(x) = f (x)x f (0)[f (1) f (0)]x
2 - Rolle [0,1] .
) , , (0,1) , f (1) f (0) =
12 f () .
) f [0,1] , f , f , : f , , [0,1] .
f , , [0,1] .
. g [0,1] - .
. g (0,1) - .
. g(0) = f (0)0 f (0)[f (1) f (0)]02 = f (0) g(0) = 0 .
IV. g(1) = f (1)1 f (0)[f (1) f (0)]12 = f (1) f (0) f (1)+ f (0) g(1) = 0 .
g Rolle [0,1] .
) g Rolle [0,1] , x0 (0,1) , g (x0) = 0 .
g (x) = f (x) f (0)2 [f (1) f (0)]x .
g (0) = f (0) f (0)2 [f (1) f (0)]0 g (0) = 0 = g (x0) .
. g [0,x0 ] .
. g (0,x0) .
. g (0) = g (x0) = 0 .
' Rolle, (0,x0) , (0,1) ,
g () = 0 .
g (x) = f (x)2 [f (1) f (0)] ,
f ()2 [f (1) f (0)] = 0 2 [f (1) f (0)] = f () f (1) f (0) =
12 f () .
. , .
6. Rolle.
- www.mathsteki.gr
- 8 -
6. f, [,] , f () = f () = f () = f () = 0 .
: ) g(x) = e
x [ f (x) f (x)] Rolle [,] .
) , , (,) , f () = f () .
) f [,] , f , f , : f , , [,] .
f , , [,] .
. g [,] - .
. g (,) - .
. g() = e [ f () f ()] = e 0 g() = 0 .
IV. g() = e [ f () f ()] = e 0 g() = 0 .
g Rolle [,] .
) g Rolle, (,) ,
g () = 0 (1)
g (x) = (ex ) [ f (x) f (x)]+ex [ f (x) f (x) ]
g (x) = ex [ f (x) f (x)]+ex [ f (x) f (x)] = ex [ f (x) f (x)+ f (x) f (x)]
g (x) = ex [ f (x) f (x)] .
(1) e [ f () f ()] = 0
e>0
f () f () = 0 f () = f () .
. , .
6. Rolle.
- www.mathsteki.gr
- 9 -
7. f, [,] - (,) ,
f ()f ()
=f ()f ()
f (x) 0 , x ! .
x0 (,) , f (x0) f (x0) = [ f (x0)]2 .
x0 = x
f (x) f (x) = [ f (x)]2 f (x) f (x)[ f (x)]2 = 0 [ f (x) ] f (x) f (x) f (x) = 0
f (x )0
[ f (x) ] f (x) f (x) f (x)f 2(x)
= 0 f (x)
f (x)
= 0 .
g(x) =
f (x)f (x)
, x [,] , x0 (,) , g (x0) = 0 .
f [,] (,) , f , f , :
f (,) .
f , , (,) .
. g [,] .. g (,) .
III. g() =
f ()f ()
, g() =f ()
f ().
f ()f ()
=f ()f ()
, ,
f ()f ()
=f ()
f () g() = g() .
Rolle, x0 (,) , g (x0) = 0 .
. , .
6. Rolle.
- www.mathsteki.gr
- 10 -
8. , f, ! , f (1) = 1 , f (2) = 4 n2 , f (e) = e
21 .
(1,e) ,
f () =12
+ 2 .
= x
f (x) =
1x 2
+ 2 f (x)1x 2
2 = 0 f (x)+1x
2x
= 0 [f (x)+ nx x 2 ] = 0 .
g(x) = f (x)+ nx x2 (1,e) ,
g () = 0 .
f ! , f , f , :
f , , ! .
f , , ! .
. g [1,2] , [2,e] .
. g (1,2) , (2,e) - .. g(1) = f (1)+ n11
2 g(1) = 0 .
IV. g(2) = f (2)+ n222 = 4 n2 + n2 4 g(2) = 0 .
V. g(e) = f (e)+ nee2 = e21+1e2 g(e) = 0 .
Rolle ,
x1 (1,2) , g (x1) = 0 , x2 (2,e) , g (x2) = 0 .
g (x) = f (x)+
1x2x .
. g [x1 ,x2 ] .
. g (x1 ,x2) .
. g (x1) = g (x2) = 0 .
Rolle, (x1 ,x2) , (1,e) ,
g () = 0 .
. , .
6. Rolle.
- www.mathsteki.gr
- 11 -
9. f, ! , f (0) = 0 , f () = f () =
2 .
( ,) , f () = 2 .
= x
f (x) = 2 x f (x)2 + x = 0 [ f (x)2x x ] = 0 [f (x)x2 x ] = 0 .
g(x) = f (x)x2 x ( ,) , -
g () = 0 .
f ! , f , f , :
f , , ! .
f , , ! .
. g [ ,0] , [0,] .
. g ( ,0) , (0,) - .. g() = f ()()
2 () = 22 + g() = 0 .
IV. g(0) = f (0)02 0 g(0) = 0 .
V. g() = f ()2 = 22 g() = 0 .
Rolle ,
1 ( ,0) , g (1) = 0 , 2 (0,) , g (2) = 0 .
g (x) = f (x)2x x .
. g [1 ,2 ] .
. g (1 ,2) .
. g (1) = g (2) = 0 .
Rolle, (1 ,2) , ( ,) , - g () = 0 .
. , .
6. Rolle.
- www.mathsteki.gr
- 12 -
10. f, ! , f (1) = f (1) = 1 , . (1,1) , f , ( , f ()) :y = 2x 3 .
f f () (),
f () =
f () = 2 f ()2 = 0 (1)
(1,1) , (1).
= x (1)
f (x)2 = 0 [ f (x)2x ] = 0 [f (x)x2 ] = 0 .
g(x) = f (x)x2 (1,1) ,
g () = 0 .
f ! , f , f , :
f , , ! .
f , , ! .
. g [1,0] , [0,1] .
. g (1,0) , (0,1) - .. g(1) = f (1)(1)
2 = 11 g(1) = 0 .
IV. g(0) = f (0)02 g(0) = 0 .
V. g(1) = f (1)12 = 11 g(1) = 0 .
Rolle ,
1 (1,0) , g (1) = 0 , 2 (0,1) , g (2) = 0 .
g (x) = f (x)2x .
. g [1 ,2 ] .
. g (1 ,2) .
. g (1) = g (2) = 0 .
Rolle, (1 ,2) , (1,1) ,
g () = 0 .
. , .
6. Rolle.
- www.mathsteki.gr
- 13 -