Download pdf - Bae Mth281

Transcript
Page 1: Bae Mth281

1

Designing a Temperature Distribution Profile

Jai-Kwan Bae

12/11/2014

Prof. Gracewski

Page 2: Bae Mth281

2

Abstract

In order to design an appropriate temperature distribution for fish, a profile T(Ο†) needs to

be determined for the temperature controller. Once the profile is decided, I could use the separation

of variables and geometric symmetry on the Laplace’s equation to derive an ordinary differential

equation. Then, the initial conditions, boundary conditions and orthogonality are used to determine

the coefficients of the temperature distribution. In the last section, we use our result to calculate

the heat flow that can be used as a sanity check.

Problem Statement

Figure 1. Spherical Coordinates Figure 2. Temperature Distribution of a Pond

PDE: 𝛻2𝑒 = 0 for 0 < 𝜌 < 𝑏 and 0 < 𝛷 <πœ‹

2

BC’s: 𝑒 (𝜌,πœ‹

2) = 0

𝑒(π‘Ž, 𝛷) = 𝑇(𝛷)

The heat flow into the pudding is equal to K∯ βˆ‡ 𝑒 βˆ™ 𝑛|𝜌=π‘Žπ‘‘π‘†

Parameters: a=5m, 𝐾0 = 0.6π‘Š/(π‘š π‘œπΆ), 𝑒 (π‘Ÿ,πœ‹

2) = 0, 𝑇(0) = 8℃, 𝑇(𝛷) > 0.

Page 3: Bae Mth281

3

Derivation

PDE: 𝛻2𝑒 = 0 for 0 < 𝜌 < 𝑏 and 0 < 𝛷 <πœ‹

2

BC’s: 𝑒 (𝜌,πœ‹

2) = 0 𝑒(π‘Ž, 𝛷) = 𝑇(𝛷)

In spherical coordinates, Laplace’s equation has the form of:

βˆ‡2𝑒 =1

𝜌2

πœ•

πœ•πœŒ(𝜌2

πœ•π‘’

πœ•πœŒ) +

1

𝜌2𝑠𝑖𝑛2𝛷

πœ•2𝑒

πœ•πœƒ2+

1

𝜌2𝑠𝑖𝑛𝛷

πœ•

πœ•π›·(sin 𝛷

πœ•π‘’

πœ•π›·) = 0

Since the temperature distribution is axisymmetric, we know:

πœ•2𝑒

πœ•πœƒ2= 0

Then PDE becomes:

βˆ‡2𝑒 =1

𝜌2

πœ•

πœ•πœŒ(𝜌2

πœ•π‘’

πœ•πœŒ) +

1

𝜌2𝑠𝑖𝑛𝛷

πœ•

πœ•π›·(sin 𝛷

πœ•π‘’

πœ•π›·) = 0

- Separation of Variables

Assume

𝑒(𝜌, 𝛷) = 𝐹(𝜌)𝐺(𝛷)

Obtain:

𝐺

𝜌2

𝑑

π‘‘πœŒ(𝜌2

𝑑𝐹

π‘‘πœŒ) +

𝐹

𝜌2 sin 𝛷

𝑑

𝑑𝛷(sin 𝛷

𝑑𝐺

𝑑𝛷) = 0

Page 4: Bae Mth281

4

Multiply ρ2

FG and rearrange it:

1

𝐹

𝑑

π‘‘πœŒ(𝜌2

𝑑𝐹

π‘‘πœŒ) = βˆ’

1

𝐺 sin 𝛷

𝑑

𝑑𝛷(sin 𝛷

𝑑𝐺

𝑑𝛷) = πœ†

Broke up the above equation into two ordinary differential equations:

ODE#1: 𝑑

𝑑Φ(sin 𝛷

𝑑𝐺

𝑑Φ) + πœ† sin 𝛷 𝐺 = 0 0 < 𝛷 <

πœ‹

2

BC #1: 𝐺 (πœ‹

2) = 0, |𝐺(0)| < ∞

ODE#2: 𝜌2 𝑑2𝐹

π‘‘πœŒ2 + 2πœŒπ‘‘πΉ

π‘‘πœŒβˆ’ πΉπœ† = 0 0 < 𝜌 < π‘Ž

BC #2: |𝐹(0)| < ∞

IC: 𝑒(π‘Ž, 𝛷) = 𝑇(𝛷)

Then we solve the Eigenvalue problems:

- Suppose Ξ»=0,

Observe,

𝜌2𝑑𝐹

π‘‘πœŒ= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ = π‘˜1, sin Ξ¦ βˆ—

𝑑𝐺

𝑑Φ= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ = π‘˜2

Then,

F =π‘˜1

𝜌+ π‘˜1

β€², 𝐺 = π‘˜2 ∫ csc Ξ¦ 𝑑Φ = π‘˜2 (log (tanΞ¦

2)) + π‘˜2

β€²

By the boundary conditions, |F(0)|, |G(0)| < ∞, 𝐺 (πœ‹

2) = 0

∴ F = π‘˜1β€², 𝐺 = π‘˜2

β€² = 0, 𝑒0 = 0, π‘‘π‘Ÿπ‘–π‘£π‘–π‘Žπ‘™

Page 5: Bae Mth281

5

- Suppose Ξ»>0,

For ODE#1, in Sturm Louiville Form, we can see:

𝑝(𝛷) = 𝑠𝑖𝑛 𝛷 , π‘ž = 0, 𝜎(𝛷) = 𝑠𝑖𝑛 𝛷

∴ πΊπ‘š(𝛷)=π‘ƒπ‘š(π‘π‘œπ‘ π›·), πœ†π‘š = π‘š(π‘š + 1)

However, since G(πœ‹/2)=0, m is always odd.

∴ 𝐺𝑛(𝛷)=𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·), πœ†π‘› = (2𝑛)(2𝑛 βˆ’ 1), for n=1,2,3, ….

For ODE#2, Assume 𝐹(𝜌) = πΆπœŒπ‘ 

2𝜌(πΆπ‘ πœŒπ‘ βˆ’1) + 𝜌2(𝐢𝑠(𝑠 βˆ’ 1)πœŒπ‘ βˆ’2) βˆ’ πœ†πΆπœŒπ‘  = 0

πΆπœŒπ‘†(2𝑠 + 𝑠(𝑠 βˆ’ 1) βˆ’ πœ†) = 0

𝑠2 + 𝑠 βˆ’ πœ† = 0

𝑠 = 2𝑛 βˆ’ 1 π‘œπ‘Ÿ βˆ’ 2𝑛

∴ 𝐹𝑛(𝜌) = Anρ2nβˆ’1 +Bn

ρ2n,

By the boundary condition #2:

∴ 𝐹𝑛(𝜌) = Anρ2nβˆ’1,

∴ 𝑒𝑛 = 𝐹𝑛𝐺𝑛,

𝑒 = βˆ‘ 𝑒𝑛

∞

𝑛=1

= βˆ‘ Anρ2nβˆ’1𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·)

∞

𝑛=1

Note that since the differential equations have the Strum Louiville Form, Ξ» β‰₯ 0.

Page 6: Bae Mth281

6

- Orthogonality

∫ 𝑃𝑛(π‘π‘œπ‘ π›·)π‘ƒπ‘š(π‘π‘œπ‘ π›·) 𝑠𝑖𝑛 𝛷 𝑑𝛷

πœ‹2

0

= 0 when π‘š β‰  𝑛

∫(𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·))2 𝑠𝑖𝑛 𝛷 𝑑𝛷

πœ‹2

0

=1

4𝑛 βˆ’ 1

The initial conditions is :

𝑒(π‘Ž, 𝛷) = 𝑇(𝛷) = βˆ‘ π΄π‘›π‘Ž2π‘›βˆ’1𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·)

∞

𝑛=1

∴ ∫ 𝑇(𝛷)𝑃2π‘šβˆ’1(π‘π‘œπ‘ π›·) 𝑠𝑖𝑛 𝛷 𝑑𝛷

πœ‹2

0

= βˆ‘ π΄π‘›π‘Ž2π‘›βˆ’1 ∫ 𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·)𝑃2π‘šβˆ’1(π‘π‘œπ‘ π›·) 𝑠𝑖𝑛 𝛷 𝑑𝛷

πœ‹2

0

∞

𝑛=1

=π΄π‘šπ‘Ž2π‘šβˆ’1

4π‘š βˆ’ 1

∴ π΄π‘š =4π‘š βˆ’ 1

π‘Ž2π‘šβˆ’1∫ 𝑇(𝛷)𝑃2π‘šβˆ’1(π‘π‘œπ‘ π›·) 𝑠𝑖𝑛 𝛷 𝑑𝛷

πœ‹2

0

Thus, the solution is:

𝑒 = βˆ‘ 𝑒𝑛

∞

𝑛=1

= βˆ‘ Anρ2nβˆ’1𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·)

∞

𝑛=1

Where

𝐴𝑛 =4𝑛 βˆ’ 1

π‘Ž2π‘›βˆ’1∫ 𝑇(𝛷)𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·) 𝑠𝑖𝑛 𝛷 𝑑𝛷

πœ‹2

0

Page 7: Bae Mth281

7

- Heat flow of the hemisphere surface

K∯ βˆ‡ 𝑒 βˆ™ 𝑛|𝜌=π‘Žπ‘‘π‘†= Kβˆ―βˆ‚u

βˆ‚ΟοΏ½Μ‚οΏ½ βˆ™ οΏ½Μ‚οΏ½ 𝜌 sin Ξ¦ π‘‘πœƒπœŒπ‘‘Ξ¦ = 2Ο€Kπ‘Ž2 ∫

βˆ‚u

βˆ‚Ο

πœ‹

20

sin Ξ¦ 𝑑Φ

= 2Ο€Kπ‘Ž2 ∫ βˆ‘(2𝑛 βˆ’ 1)π΄π‘›π‘Ž2π‘›βˆ’2𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·) sin Ξ¦ 𝑑Φ

∞

𝑛=1

πœ‹2

0

= 2πœ‹πΎ βˆ‘(2𝑛 βˆ’ 1)π΄π‘›π‘Ž2𝑛 ∫ 𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·) 𝑠𝑖𝑛 𝛷 𝑑𝛷

πœ‹2

0

∞

𝑛=1

= 2πœ‹πΎ βˆ‘(2𝑛 βˆ’ 1)π΄π‘›π‘Ž2𝑛 ∫ 𝑃2π‘›βˆ’1(π‘₯)𝑑π‘₯

1

0

∞

𝑛=1

- Heat flow of the upper surface

K∯ βˆ‡ 𝑒 βˆ™ 𝑛𝑑𝑆 = 𝐾 ∯1

ρ

πœ•π‘’

πœ•Ξ¦Ξ¦Μ‚ βˆ™ Ξ¦Μ‚πœŒπ‘‘πœƒπ‘‘πœŒ = 2πœ‹πΎ ∫

πœ•π‘’

πœ•Ξ¦π‘‘πœŒ

π‘Ž

0

= 2Ο€K ∫ βˆ‘ π΄π‘›πœŒ2π‘›βˆ’1πœ•π‘ƒ2π‘›βˆ’1(π‘π‘œπ‘ π›·)

πœ•Ξ¦π‘‘πœŒ

∞

𝑛=1

π‘Ž

0

= 2Ο€K βˆ‘ 𝐴𝑛

π‘Ž2𝑛

2𝑛

𝑑𝑃2π‘›βˆ’1(π‘π‘œπ‘ π›·)

𝑑Φ

∞

𝑛=0

|Ξ¦=

Ο€2

∴ The total Heat flux = 2Ο€K βˆ‘ π΄π‘›π‘Ž2𝑛 [(2𝑛 βˆ’ 1) ∫ 𝑃2π‘›βˆ’1(π‘₯)𝑑π‘₯

1

0

βˆ’1

2𝑛

𝑑𝑃2π‘›βˆ’1(π‘₯)

𝑑π‘₯|π‘₯=0]

∞

𝑛=1

Note that this value should be 0 as a sanity check.

Page 8: Bae Mth281

8

Results

(a) 𝑇1(𝛷) = 𝑇0 cos Ξ¦

Figure 3. Plot of 𝑇0 cos Ξ¦

𝐴1 =3

π‘Žβˆ« 8 cos2 πœƒ sin πœƒ π‘‘πœƒ

πœ‹/2

0=

24

aβˆ—

1

3=

8

π‘Ž, 𝐴𝑛 = 0 π‘€β„Žπ‘’π‘› 𝑛 β‰  1

∴ 𝑒1 =8

π‘ŽπœŒ π‘π‘œπ‘  𝛷

In the previous section, we derived the heat flux: K∯ βˆ‡ 𝑒 βˆ™ 𝑛|𝜌=π‘Žπ‘‘π‘†

=2πœ‹πΎ βˆ‘ (2𝑛 βˆ’ 1)π΄π‘›π‘Ž2𝑛 ∫ 𝑃2π‘›βˆ’1(π‘₯)𝑑π‘₯1

0βˆžπ‘›=1 = 2πœ‹πΎ βˆ— 𝐴1π‘Ž2 βˆ—

1

2= 24πœ‹

Figure 4. Plot of 𝑒1(𝜌, 0)

0.5 1.0 1.5

2

4

6

8

1 2 3 4 5

2

4

6

8

Page 9: Bae Mth281

9

Figure 5. Contour plot of 𝑒1(𝜌, Ξ¦)

(b) 𝑇2(𝛷) = 3 π‘π‘œπ‘  𝛷 + 5 π‘π‘œπ‘ 3 𝛷

Figure 6. Plot of 𝑇2(𝛷) = 3 π‘π‘œπ‘  𝛷 + 5 π‘π‘œπ‘ 3 𝛷

𝐴1 =3

π‘Žβˆ« (3 π‘π‘œπ‘  𝛷 + 5 cos3 𝛷) cos 𝛷 sin 𝛷 𝑑𝛷

πœ‹/2

0=

6

a= 1.2,

𝐴2 =7

π‘Ž3∫ (3 π‘π‘œπ‘  𝛷 + 5 π‘π‘œπ‘ 3 𝛷)𝑃3(cos 𝛷) sin 𝛷 𝑑𝛷

πœ‹/2

0

=2

π‘Ž3=

2

125

0.5 1.0 1.5

2

4

6

8

Page 10: Bae Mth281

10

𝐴𝑛 = 0 π‘€β„Žπ‘’π‘› 𝑛 β‰  1, 2

∴ 𝑒2(𝜌, 𝛷) = 𝐴1𝜌 π‘π‘œπ‘  𝛷 + 𝐴2𝜌3𝑃3(π‘π‘œπ‘  𝛷)

=6

5𝜌 π‘π‘œπ‘  𝛷 +

1

125𝜌3(5 cos3 Ξ¦ βˆ’ 3 π‘π‘œπ‘  𝛷)

In the previous section, we derived the heat flux: K∯ βˆ‡ 𝑒 βˆ™ 𝑛|𝜌=π‘Žπ‘‘π‘†

=2Ο€Kπ‘Ž2 βˆ«βˆ‚u

βˆ‚Ο

πœ‹

20

sin Ξ¦ 𝑑Φ = 2πœ‹πΎ βˆ‘ (2𝑛 βˆ’ 1)π΄π‘›π‘Ž2𝑛 ∫ 𝑃2π‘›βˆ’1(π‘₯)𝑑π‘₯1

0βˆžπ‘›=1

= 2Ο€K (𝐴1π‘Ž2 βˆ—1

2+ 3𝐴2π‘Ž4 βˆ— (βˆ’

1

8)) = 13.5πœ‹

Figure 7. Plot of 𝑒2(𝜌, 0)

Figure 8. Contour Plot of 𝑒2(𝜌, Ξ¦)

1 2 3 4 5

2

4

6

8

Page 11: Bae Mth281

11

Discussion

In order to design the temperature profile for fish, I had to choose a specific species of fish

that I am targeting for. Lake Trout is one of the most common fish that you can see in a pond and

the optimal temperature for the species is around 40℉ which is about 4℃. Compare to the original

solution, you can observe that the second profile has more gentle temperature change. I also tried

to make the profile as simple as possible such that the fish inside the pond won’t get confused by

the artificial manipulation. The sanity checks were achieved by checking all kinds of various

conditions, such as T(Ξ¦) > 0, u (ρ,Ο€

2) = 0, T(0) = 8. The most characteristic sanity check was to

see if the total heat flux is 0. We proved above that the total heat flux becomes 0 when

(2𝑛 βˆ’ 1) ∫ 𝑃2π‘›βˆ’1(π‘₯)𝑑π‘₯1

0=

1

2𝑛

𝑑𝑃2π‘›βˆ’1(π‘₯)

𝑑π‘₯|π‘₯=0. It turns out the equation is satisfied in case n=1 and

n=2. From the conservation energy, we can deduce that it is true for all eigenfunctions.

Summary

This project focuses on solving the Laplace’s equation in an axisymmetric situation. We

used the separation of variables to obtain the ordinary differential equation and could observe the

eigenfunctions are Legendre polynomials. By setting a temporary initial condition with fixed

boundary conditions, all the coefficients were obtained and the graphs were drawn with

Mathematica as figures.