Download pdf - Binary sigma phases

Transcript
Page 1: Binary sigma phases

AB INITIO-BASED MEAN FIELD THEORY OF SITE OCCUPATION IN BINARY SIGMA PHASES

E. Kabliman

Page 2: Binary sigma phases

OU

TL

INE

2

1. Introduction: 1. Binary Οƒ-phases

2. Fe-Cr phase diagram

3. Magnetic properties

4. Οƒ-phase structure

5. Aim

2. Ab initio-based mean field theory: 1. Helmholtzβ€˜s free energy

2. Total energy expansion

3. EMTO-CPA

4. Convergence of total energy expansion

5. Entropic contributions

6. Site occupancies

3. Results [FeCr]: 1. Effect of magnetic state

2. Structural variations

3. Final site distribution

4. Results [other Οƒ-phases]: 1. ReW

2. CoCr

3. FeV

5. Summary

Page 3: Binary sigma phases

3

Οƒ-phase (light plates). Nicrofer 3127. after annealing at 700ΠΎ Π‘ during 6000 hours

Οƒ-phase formation = technological problem

J.L. Garin and R.L. Mannheim. J. Mat. Prog. Tech. 209, 3143 (2009)

J. VΕ™estal et al. Comp.Mat.Sc. 38, 298 (2006)

Οƒ-phase : β€’ has a lamellar morphology β€’ nucleates near grains boundaries (concentration of elements, e.g. Cr and Mo, is favorable) and on carbide particles

PROBLEM of Οƒ-phase precipitation : β€’ decreases ductility and corrosion resistance β€’ increases brittleness and cracks formation

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 4: Binary sigma phases

4

Οƒ-phase in binary alloys

β€’ atomic radii of the alloy components must be similar β€’ Fe-Cr system has the smallest VF at room T.

V.N

. B

yko

v an

d V

.A.

So

lov’

ev: Z

hu

rn.

Str

uk

t. K

him

ii V

ol.

5 N

o. 2

, 28

8 (

196

4)

VF=βˆ†r/rav r – atomic radii

β€’ room T: 8 of 41 systems has VF > 8% β€’ elevated T: 2 of 41 systems has VF > 8%

In binary Οƒ-phases VF ≀ 8 %

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 5: Binary sigma phases

5

Fe-Cr phase diagram

HISTORY :

β€’ 1923 Bain: A hard and nonmagnetic phase in Fe-Cr [Chem. Met. Eng. 28 (1923)]

β€’ 1943 Cook, Jones: Crystal structure of Οƒ-phase [J. Iron Steel Inst. London 148

(1943)]

β€’ At present: Οƒ-phase is found in more than 40 systems (Cr-Fe, Cr-Co, V-Fe, etc.)

4

brittle Οƒ-phase

Phase decomposition

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 6: Binary sigma phases

6

Magnetic properties

J. Cieslak, M. Reissner et al. Phys. Stat. Sol. (a) 205, No. 8 (2008)

[ TC measured only in Fe-Cr and Fe-V ]

Fe1-xCrx

Fe1-xCrx

Ave

rage

Β΅ p

er F

e at

om

C

uri

e te

mp

erat

ure

1. Introduction:

1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 7: Binary sigma phases

7

Site ncoord nmult

(Wyck.pos.) x

at 923 K y

at 923 K z

at 923 K Emprical scheme

A 12 2(a) 0 0 0 (Mn,Fe,Co,Ni)

B 15 4(f) 0,39864(4) 0,39864(4) 0 (Ti,V,Cr,Mn,Mo)

C 14 8(i) 0,46349(4) 0,13122(4) 0 mixed

D 12 8(i) 0,73933(4) 0,06609(4) 0 (Mn,Fe,Co,Ni)

E 14 8(j) 0,18267(3) 0,18267(3) 0,25202(9) mixed

1. H.L. Yakel. Acta Cryst. B 39, 20 (1983) 2. J. S. Kasper, R. M. Waterstrat. Acta Cryst. 9, 289 (1956)

Οƒ-phase structure

Fe1-xCrx for x = 0.495, a = 0.87968 nm, c/a = 0.518. ncoord – site coordination numbers; nmult – site multiplicities

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 8: Binary sigma phases

8

Aim

J. Cieslak, M. Reissner et al. Phys. Stat. Sol. (a) 205, No. 8 (2008)

Determine atomic site distribution in disordered Οƒ-phase as a function of T and x

Experiment β€’ lack of data: site occupancies only at few T and x β€’ difficulties:

β€’ long annealing times and purity of a sample β€’ Fe and Cr: similar X-ray scattering factors

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 9: Binary sigma phases

Sigma-phase is a substitutionally disordered solid solution in paramagnetic state;

It has a low symmetry structure with undefined β€žexactβ€œ atom-site correspondence;

How to describe electronic structure and total energy of such a system?

9

Page 10: Binary sigma phases

SUBSTITUTIONAL DISORDERED SYSTEMS

Methods for total energy calculations

Supercells approach: straightforward method, use of big periodic supercells

Cluster expansion formalism: expansion of total energies in terms of the effective cluster interactions (strucutre inversion method)

Special quasirandom structures: reproduce the most relevant radial correlation functions of an infinite random structure

Methods for electronic structure calculations

Virtual crystal approximation: real disordered system is replaced by an virtual one-component one

Coherent potential approximation: provide the same scattering properties of the one-component effective medium as the average of alloy components, embedded in this effective medium

Locally self-consistent Greenβ€˜s function: introduction of local interaction zone around every atom, inside which an atom β€šfeelsβ€˜ ist real local environment, but outside β€šseesβ€˜ only the CPA effective medium

Page 11: Binary sigma phases

EMTO-CPA

Some of slides on EMTO-CPA were kindly provided by Prof. A. Ruban (KTH, Sweden)

Page 12: Binary sigma phases

ATOMIC SPHERES METHODS

β€’ Augmented plane waves (APW)

β€’ Muffin-tin orbitals (MTO) ASA, exact MTO (EMTO)

β€’ Linearized APW and MTO (LAPW and LMTO)

β€’ (Linearized) augmented plane wave method ((L)APW) + local orbitals

β€’ Full-potential LAPW and LMTO methods

β€’ Various Greenβ€˜s function method (KKR, KKR-CPA, etc)

Fig. 2.1

Page 13: Binary sigma phases

13

Partial wave Back-extrapolated partial wave Screened spherical wave

Page 14: Binary sigma phases

Kinked partial wave or exact muffin-tin

orbital

SSW Partial wave

BPW

They are basis functions of the EMTO method

The solution of the Kohn-Sham equation is then given by

Their linear combination:

A. Ruban

Page 15: Binary sigma phases

Applications of the EMTO method: advantages

and disadvantages

The EMTO is the method to calculate electronic structure and

total energies of ordered and random alloys as in the bulk as

well as at surfaces and interfaces .

As soon as the total energy is obtained, it can be used for

calculations of different thermodynamic properties, like

enthalpies of formation, solution, segregation, ordering

energies and so on.

It can be also used for calculations of the elastic properties:

in most cases there is very little information about elastic

constants of alloys.

A. Ruban

Page 16: Binary sigma phases

Metals and alloys in the paramagnetic state

Paramagnetic state in magnets is usually due to randomly

oriented spin magnetic moment on atoms.

Theoretically it can be presented by the so-called disordered

local magnetic moment (DLM) model, in which such a system

considered as equiatomic random alloy of atoms with spin-up

and spin-down orientation.

It is extremely difficult (close to impossible at the present

time) to treat alloys in the DLM state using such methods as

VASP, where a supercell approach is required. However, this

is extremely easy in the case of EMTO, where such a random

alloy is treated using coherent potential approximation (CPA).

A. Ruban

Page 17: Binary sigma phases

Green’s function

SchrΓΆdinger (Kohn-Sham) equation

A. Ruban

Page 18: Binary sigma phases

Coherent potential approximation (CPA)

(isomorphous single-site approximation)

Since wave function is not self-averaging quantity, the Green’s

technique be used in order to have a consistent theory.

In the CPA random alloy is substituted

by perfectly ordered (CPA) effective

medium, whose scattering properties

satisfy the condition:

These non-linear equations are solved self-consistently A. Ruban

Page 19: Binary sigma phases

AB INITIO BASED MEAN FIELD THEORY

19

Page 20: Binary sigma phases

20

Ab initio based mean field theory :

𝐹 = πΈπ‘‘π‘œπ‘‘ βˆ’ 𝑇𝑆

π»π‘π‘œπ‘›π‘“ = 𝐸0 + π‘‰βˆ(1)𝛿𝑐𝛼 ,𝑖

𝑖𝛼=1,5

+1

2 π‘‰βˆπ›½ ,𝑝

(2)𝛿𝑐𝛼 ;𝑖𝛿𝑐𝛽 ;𝑗

𝑖 ,π‘—βˆˆπ‘π‘π›Ό ,𝛽=1,5

+1

3 π‘‰βˆπ›½π›Ύ ,𝑑

(3)𝛿𝑐𝛼 ;𝑖𝛿𝑐𝛽 ;𝑗𝛿𝑐𝛾 ;π‘˜

𝑖 ,𝑗 ,π‘˜βˆˆπ‘‘π‘‘π›Ό ,𝛽 ,𝛾=1,5

+ β‹―

𝛿𝑐𝛼 ,𝑖 = 𝑐𝛼 ,𝑖 βˆ’ 𝑐𝛼 ,π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐𝛼 ≑ 𝑐𝛼 ,𝑖 π‘Žπ‘›π‘‘ 𝑐𝛼 .𝑖 = 1 𝑖𝑓 πΆπ‘Ÿ π‘Žπ‘‘ 𝑠𝑖𝑑𝑒 𝑖

πΈπ‘‘π‘œπ‘‘ 𝑐𝛼 = 𝐸0 π‘₯ + 𝑛𝛼 𝐽𝛼 1 𝑐𝛼

4

𝛼=1

.

𝑛𝛼 βˆ’ 𝑠𝑖𝑑𝑒 π‘šπ‘’π‘™π‘‘π‘–π‘π‘™π‘–π‘π‘–π‘‘π‘¦, 𝑐𝛼 βˆ’ πΆπ‘Ÿ π‘ π‘’π‘π‘™π‘Žπ‘‘π‘‘π‘–π‘π‘’ π‘œπ‘π‘π‘’π‘π‘Žπ‘›π‘π‘¦

𝐽𝛼 1

= πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘π›Ό

βˆ’πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘πΈ

|𝑐𝛼=π‘₯=π‘π‘œπ‘›π‘ π‘‘

Helmholtz’s free energy

β€’ JΞ±(1) are relative effective chemical potentials at given x, which describe

preference of Cr atoms to occupy site Ξ± with respect to site E.

β€’ JΞ±(1) are indeed enough to calculate Cr site occupancies.

Fe1-xCrx

Effective on-site interactions with respect to the E site

IDEA :

site sublattice

pairs

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 21: Binary sigma phases

21

Total energy expansion

Problem of CW method: Number of different pair ECI just within a polyhedron of closest sites is 20, while number of non-equivalent multi-site interactions is much larger even within such short distances.

π»π‘π‘œπ‘›π‘“ = 𝐸0 + π‘‰βˆ 1 𝛿𝑐𝛼,𝑖

𝑖𝛼=1,5

+1

2 π‘‰βˆπ›½,𝑝

2 𝛿𝑐𝛼;𝑖𝛿𝑐𝛽;𝑗

𝑖,π‘—βˆˆπ‘π‘π›Ό,𝛽=1,5

+1

3 π‘‰βˆπ›½π›Ύ,𝑑

3 𝛿𝑐𝛼;𝑖𝛿𝑐𝛽;𝑗𝛿𝑐𝛾;π‘˜

𝑖,𝑗,π‘˜βˆˆπ‘‘π‘‘π›Ό,𝛽,𝛾=1,5

+β‹―

Fe1-xCrx

~ 130 atoms

bcc : i = 2-3 fcc : i = 1-2 Οƒ-A : i = 3 Οƒ-B : i = 6 Οƒ-C : i = 8 Οƒ-D : i = 8 Οƒ-E : i = 9

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 22: Binary sigma phases

22

Effective pair cluster interactions

Free energy of Οƒ-phase can be quite accurately presented in terms of concentration-independent cluster interactions

Dominating terms in this expansion can be on-site interactions

Single-site mean-field approximation will be sufficient to provide a reasonably accurate description of configurational effects at high temperatures

xCr=0.5 xCr=0.6

SGPM

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 23: Binary sigma phases

23

Effective on-site interactions

πΈπ‘‘π‘œπ‘‘ 𝑐𝛼 = 𝐸0 π‘₯ + 𝑛𝛼 𝐽𝛼 1 𝑐𝛼

4

𝛼=1

𝑛𝛼 βˆ’ 𝑠𝑖𝑑𝑒 π‘šπ‘’π‘™π‘‘π‘–π‘π‘™π‘–π‘π‘–π‘‘π‘¦, 𝑐𝛼 βˆ’ πΆπ‘Ÿ 𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘’π‘π‘Žπ‘›π‘π‘¦

𝑐5 =30

𝑛5βˆ’

1

𝑛5 𝑛𝛼𝑐𝛼

4

𝛼=1

𝐽𝛼 1 =

πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘π›Ό

βˆ’πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘πΈ

|𝑐𝛼=π‘₯=π‘π‘œπ‘›π‘ π‘‘

β€’ JΞ±(1) are relative effective chemical potentials at given x,

which describe preference of Cr atoms to occupy site Ξ± with

respect to site E.

β€’ Etot are found in coherent potential approximation (CPA)

implemented on exact muffin-tin orbitals (EMTO) method

in order to simulate disordered atomic distribution in Οƒ-phase.

Fe1-xCrx

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 24: Binary sigma phases

No local environment effects LSGF

No local atomic relaxations Wien2k

24

Check of Coherent Potential Approximation

Locally self-consistent Greenβ€˜s function technique

2 supercells (SC1 and SC2) = (4x4x4) of 1920 atoms

Local interaction zone = polyhedron of the nearest neighbors for every site (A,B,C,D,E)

CPA results are in a very good agreement with those of LSGF calculations for supercells

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 25: Binary sigma phases

25

Check of EMTO and local atomic relaxations

Etot is calculated by: β€’ full-potential linearized augmented plane wave + local orbitals method (WIEN2k code) β€’ exact muffin-tin orbitals method (EMTO code)

Site Exp. [1] 923 K

Final 0 K

A 0.125 Cr 0.0 Cr

B 0.750 Cr 1.0 Cr

C 0.625 Cr 0.375 Cr

D 0.163 Cr 0.0 Cr

E 0.663 Cr 1.0 Cr

1. H.L. Yakel, Acta Cryst. B 39, 20 (1983) 2. A. Zubkov and B.Mogutnov, Dokl. Ak. Nauk SSSR 311, 388 (1990) 3. D. Read and E. Thomas, J. Phys. Chem. Sol. 29, 1569 (1968)

Calculated (WIEN2k)

Measured

a 0.86433 nm 0.87968 nm [1]

c/a 0.518 0.518 [1]

Ef 5 kJ/mol 6.5 kJ/mol [2]

ΞΌ 0.53 ΞΌB 0.20 ΞΌB [3]

Site relaxations < 0.1 kJ/mol

[Good agreement ]

Fe0.5Cr0.5

limit of CPA

β€’ EMTO and Wien2k obtain the same equilibrium (final) atomic distribution

β€’ Site relaxations in Οƒ-FeCr are negligible

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 26: Binary sigma phases

26

Convergence of total energy expansion

πΈπ‘‘π‘œπ‘‘ 𝑐𝛼 = 𝐸0 π‘₯ + 𝑛𝛼 𝐽𝛼 1 𝑐𝛼

4

𝛼=1

+ 𝑛𝛼𝑛𝛽 𝐽𝛼𝛽 2 𝑐𝛼𝑐𝛽

4

𝛼 ,𝛽=1

𝐽𝛼 1

= πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘π›Ό

βˆ’πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘πΈ

|𝑐𝛼=π‘₯=0.5

Mean least-squares fit 𝑱 𝜢 𝟏

: 89 various Οƒ-phase configurations

for x = 0.50 in DLM state

ECI A B C D E

𝐽 𝛼 1

16.0951 0.8670 1.4796 15.4150 0

JΞ±(1) 16.4062 0.4688 1.7812 14.3438 0

𝐽 𝛼𝛽 2

A B C D E

A -1.1983 -0.3714 -0.6475 -0.4568 0

B -0.4896 -0.3899 -0.4631 0

C -0.5680 -0.4065 0

D -0.6397 0

E 0

β€’ 𝐽 𝛼 1 : root-mean-square error ~ 0.2 mRy/atom

β€’ 𝐽 𝛼 1

+ 𝐽 𝛼𝛽 2 : root-mean-square error ~ 0.2 mRy/atom

β€’ Total energies calculated without/with effective pair interactions 𝐽 𝛼𝛽 2

are similar

β€’ Chemical potentials JΞ±(1) reproduce well the on-site interactions from

mean least squares fit 𝐽 𝛼 1

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 27: Binary sigma phases

𝐹 = πΈπ‘‘π‘œπ‘‘ βˆ’ 𝑇(π‘†π‘π‘œπ‘›π‘“ + π‘†π‘šπ‘Žπ‘”π‘› + π‘†π‘£π‘–π‘π‘Ÿ )

π‘†π‘π‘œπ‘›π‘“ = βˆ’π‘˜π΅ π‘›βˆ π‘βˆ ln π‘βˆ + 1 βˆ’ π‘βˆ ln 1 βˆ’ π‘βˆ

5

𝛼=1

π‘†π‘šπ‘Žπ‘”π‘› = π‘˜π΅ π‘›βˆ[

5

𝛼=1

π‘βˆ ln πœ‡π›ΌπΆπ‘Ÿ + 1 + 1 βˆ’ π‘βˆ ln πœ‡π›Ό

𝐹𝑒 + 1 ]

π‘†π‘£π‘–π‘π‘Ÿ = 𝑛𝑒𝑔𝑙𝑒𝑐𝑑𝑒𝑑

27

Entropy contributions to free energy

Magnetism:

β€’ In order to simulate paramagnetic state

at finite T disordered local moment

(DLM) state is used.

β€’ Longitudinal spin fluctuations (LSF)

are high temperature magnetic excitations

and induce modified spin magnetic

moments on the alloy components.

{ DLM + LSF }

Site DLM Β΅(Fe)

DLM Β΅(Cr)

+LSF Β΅(Fe)

+LSF Β΅(Cr)

A 0.0 0 0.89 0.28

B 1.45 0 1.63 0.43

C 1.26 0 1.48 0.34

D 0.04 0 1.06 0.32

E 0.82 0 1.09 0.32

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 28: Binary sigma phases

Οƒ 28

P. Korzhavyi et al. Mat. Res. Soc. Symp. Proc. V 842, S4.10.1 (2005)

H at 0 K

H

H – TSconf

H – T(Sconf+Smagn)

at 1000 K

Approach : 32 ordered (end-member) configurations and DLM model

Importance of magnetism 1. Introduction:

1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 29: Binary sigma phases

πœ•πΉ

πœ•π‘π›Ό=πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘π›Ό

βˆ’ 𝑇 πœ•π‘†π‘π‘œπ‘›π‘“

πœ•π‘π›Ό+πœ•π‘†π‘šπ‘Žπ‘”π‘›

πœ•π‘π›Ό = 0

𝑐5 =30

𝑛5βˆ’

1

𝑛5 𝑛𝛼𝑐𝛼

4

𝛼=1

πœ•πΉ

πœ•π‘π›Ό= 𝐽𝛼

1 𝑛𝛼 + π‘˜π΅π‘‡π‘›π›Ό 𝑙𝑛𝑐𝛼 βˆ’ 𝑙𝑛 1 βˆ’ 𝑐𝛼

βˆ’ π‘˜π΅π‘‡π‘›π›Ό 𝑙𝑛𝑐5 βˆ’ 𝑙𝑛 1 βˆ’ 𝑐5 +π‘˜π΅π‘‡π‘›π›Ό 𝑙𝑛 πœ‡π›ΌπΉπ‘’ + 1

βˆ’ π‘˜π΅π‘‡π‘›π›Ό 𝑙𝑛 πœ‡5𝐹𝑒 + 1 βˆ’ π‘˜π΅π‘‡π‘›π›Ό 𝑙𝑛 πœ‡π›Ό

πΆπ‘Ÿ + 1

+π‘˜π΅π‘‡π‘›π›Ό 𝑙𝑛 πœ‡5πΆπ‘Ÿ + 1

29

Equilibrium site occupancies cΞ±

π’„βˆ =𝝌𝜢

𝟏 + 𝝌∝

where

𝝌∝ = 𝑒 βˆ’

1π‘˜π΅

𝐽∝ 1

𝑐5

1 βˆ’ 𝑐5

(πœ‡5𝐹𝑒 + 1)

(πœ‡π›ΌπΉπ‘’ + 1)

(πœ‡π›ΌπΆπ‘Ÿ + 1)

(πœ‡5πΆπ‘Ÿ + 1)

(by Cr atoms)

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 30: Binary sigma phases

30

Effect of magnetic state on site occupations

Fe0.5Cr0.5

B

B (A,D)

Effective on-site interactions JΞ±

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

T β‰ˆ 0 K : integer site occupation is defined by Etot and described by the effective on-site interactions JΞ±. high T : partial site occupation is driven by Sconf, while Smagn corrects cΞ± in (A,D) and B due to proper account of magnetism

Page 31: Binary sigma phases

31

Structural variations and ¡α (T)

V expansion : increases available space around (A,D) and occupation by large Cr – not favored – distortion within kagome layers. c/a expansion : decreases available space around E and increases around C.

T dependence of ¡α(Fe,Cr) Jα

Structural parameters

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 32: Binary sigma phases

32

Final site distribution vs T

β€’ Preferences in atomic site distribution according to the empirical scheme of ordering

β€’ Good agreement with experimental data at finite T and results obtained by Wienk at T = 0 K

Fe0.5Cr0.5

Including all effetcs (magnetism, structural changes and T effects)

Site Emprical scheme

A (Mn,Fe,Co,Ni)

B (Ti,V,Cr,Mn,Mo)

C mixed

D (Mn,Fe,Co,Ni)

E mixed

Wie

n2k

1. Introduction:

1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 33: Binary sigma phases

33

Previous work

32 = 25 end-member compounds (total energy by LMTO-ASA)

24 effective cluster interactions were calculated by Connoly-Williams method

Magnetism was neglected

Results at high T disagree with experiment

Results at T = 0 K disagree with Wien2k

Site occupancy

M.H.F. Sluiter et al. PRL75 , 3142(1995)

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 34: Binary sigma phases

34

Final site distribution vs x

β€’ Linear dependence of the site occupancies on composition x β€’ Good agreement with experimental data

EK, P.Blaha, K. Schwarz, A.V. Ruban, B. Johansson, PRB 83, 092201 (2011)

Fe1-xCrx

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 35: Binary sigma phases

35

Test : Re0.5W0.5 system βˆ†(AR) = 2 pm

β€’ Preferences in atomic site distribution according to the empirical scheme of ordering

β€’ Reverse occupation of C and E site in contrast to Fe-Cr β€’ Agreement with the earlier published work

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Site Emprical scheme

A (Mn,Fe,Co,Ni)

B (Ti,V,Cr,Mn,Mo)

C mixed

D (Mn,Fe,Co,Ni)

E mixed

C. Berne et al. PRB64 ,144103 (2001)

Page 36: Binary sigma phases

36

Test : Co0.5Cr0.5 system βˆ†(AR) = 3 pm

β€’ Preferences in atomic site distribution according to the empirical scheme of ordering

β€’ Site occupation similiar to the Fe-Cr system

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Site Emprical scheme

A (Mn,Fe,Co,Ni)

B (Ti,V,Cr,Mn,Mo)

C mixed

D (Mn,Fe,Co,Ni)

E mixed

Page 37: Binary sigma phases

37

𝐹 = πΈπ‘‘π‘œπ‘‘ βˆ’ 𝑇(π‘†π‘π‘œπ‘›π‘“ + π‘†π‘šπ‘Žπ‘”π‘› + π‘†π‘£π‘–π‘π‘Ÿ )

πΈπ‘‘π‘œπ‘‘ 𝑐𝛼 = 𝐸0 π‘₯ + 𝑛𝛼 [ 𝐽𝛼 1

+ 𝐽𝛼 π‘Ÿπ‘’π‘™π‘Žπ‘₯

]𝑐𝛼

4

𝛼=1

𝑛𝛼 βˆ’ 𝑠𝑖𝑑𝑒 π‘šπ‘’π‘™π‘‘π‘–π‘π‘™π‘–π‘π‘–π‘‘π‘¦, 𝑐𝛼 βˆ’ 𝑉 𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘’π‘π‘Žπ‘›π‘π‘¦

𝐽𝛼 1

= πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘π›Ό

βˆ’πœ•πΈπ‘‘π‘œπ‘‘πœ•π‘πΈ

|𝑐𝛼=π‘₯=π‘π‘œπ‘›π‘ π‘‘

𝐽𝛼 π‘Ÿπ‘’π‘™π‘Žπ‘₯

= πΈπ‘Ÿπ‘’π‘™π‘Žπ‘₯ /π‘Žπ‘‘π‘œπ‘š

Effective on-site interactions VΞ±(1)

with respect to the E site

Fe0.5V0.5: local atomic relaxations βˆ†(AR) = 8 pm

ECI A B C D E

JΞ±(1) 24.0938 -7.7813 0.3750 19.8750 0

JΞ±(1) +JΞ±

(relax) 21.9375 -7.4062 0.3750 18.1875 0

EMTO-CPA

β€’ Contributions from local atomic relaxations to effective on-site interactions in Fe-V are small

β€’ Contributions in other systems with βˆ†(AR) ≀ 8 pm are expected to be also negligible

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 38: Binary sigma phases

38

Test : Fe-V system βˆ†(AR) = 8 pm

β€’ Preferences in atomic site distribution according to the empirical scheme of ordering

β€’ Nearly full occupation of (A,D,) and B in contrast to Fe-Cr system [due to bigger βˆ†(AR)]

Site Emprical scheme

A (Mn,Fe,Co,Ni)

B (Ti,V,Cr,Mn,Mo)

C mixed

D (Mn,Fe,Co,Ni)

E mixed

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 39: Binary sigma phases

39

Test : Fe-V system βˆ†(AR) = 8 pm

β€’ Linear dependence of the site occupancies on composition x β€’ Reasonable agreement with experimental data β€’ With increase of βˆ†(AR) full occupation of sublattices is more

pronounced

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 40: Binary sigma phases

40

Summary :

Ab initio based mean field theory was suggested to calculate the Cr site occupancies in the Fe-Cr Οƒ-phase.

4 effective on-site interaction parameters are enough to simulate the atomic site distribution in Οƒ-phase

The calculated Cr site occupancies are in a good agreement with the results obtained by the FP-LAPW method (WIEN2k) at T = 0K and available experimental data at finite T.

It was shown that the Fe-Cr Οƒ-phase exhibits a non-trivial magnetic behaviour at high T, which affects the site occupation by Fe and Cr atoms. The structural variation (volume and c/a) can lead to an additional atomic redistribution.

The proposed method works also for the other binary Οƒ-phases. In particularly, Re-W, Co-Cr, Fe-V systems have been tested and results agree with empirical scheme of ordering.

The proposed method can be further applied for the ternary Οƒ-phases.

1. Introduction: 1. Binary Οƒ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. Οƒ-phase structure 5. Aim

2. Ab initio MF theory:

1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies

3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution

4. Results [other Οƒ-s] : 1. ReW 2. CoCr 3. FeV

5. Summary

Page 41: Binary sigma phases

AC

KN

OW

LE

DG

EM

EN

TS

41

Prof. A. V. Ruban Applied materials Physics Department of Materials Science and Engineering The Royal Institute of Technology (KTH) BrinellvΓ€gen 23, SE-100 44 Stockholm, Sweden

Prof. P. Blaha Prof. K. Schwarz Institute of Materials Chemistry, Vienna University of Technology Getreidemarkt 9/165-TC, A-1060 Vienna, Austria

and WIEN2k group


Recommended