Download pdf - Boundary Layer Theory

Transcript
Page 1: Boundary Layer Theory

-

Prof. Dr. Norbert Ebeling

Boundary Layer TheoryLecture notes

Page 2: Boundary Layer Theory
Page 3: Boundary Layer Theory

Prof. Dr. N. Ebeling Boundary Layer Theory - 1 -

Contents :

1) General fluid mechanics / Newton fluids 1.1) Euler's law of hydrostatics 1.2) Friction 1.3) Dimensionless numbers 1.4) Laminar flow in a tube

2) Conservation equations 2.1) Mass balance for ρ = const. 2.2) Euler's and Bernoulli's equations 2.3) Navier-Stokes equations

3) Boundary layers 3.1) Boundary layers on a flat plate 3.2) Friction forces on a plate 3.3) Boundary layer on an obstacle

4) Potential and stream functions

5) Law of Kutta-Joukowski

6) Exact calculation of the Boundary layer thickness 6.1) Conservation of mass (continuity equation) 6.2) Navier-Stokes and Blasius equations 6.3) Friction

7) Thermal Boundary layer 8) Mass Transfer Boundary layer equation

9) Turbulent Boundary layer

10) Burbling 11) Bibliography 12) Acknowledgment

Page 4: Boundary Layer Theory

(dz) dy

dx

iDu

= dmDt

idF

∂ = 0

u

t

∂i

u = u

x

Du

Dt

if

= dx dy dzdm ρ i i i

x

y

z

i e x u

j e y v general definitions

k e z w

Prof. Dr. N. Ebeling Boundary Layer Theory - 2 -

1) General fluid mechanics / Newton Fluids

General definitions

Acceleration :

stationary :

frequently :

volume force: (e.g. g )

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂i i i

u u u u = + u + v + w

t x y z

Du

Dt

Page 5: Boundary Layer Theory

1dF↓

2dF↑

x

F f dx dy dz = dx

x

∂ρ

∂i i i i i

dp dy dzdF = i i

x

p f =

∂i

x 1 2 f dV + dF = dFρ i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 3 -

1.1) Euler's law of hydrostatics

x ↓xf

Page 6: Boundary Layer Theory

= + u

yτ η

∂i

u =

yτ µ

∂i

inertial force

friction force

+ dyy

ττ i

τ

����

���� ( ) = dy dx dzFR

Fy

dA

τ∂

∂i i i

�����

{

Prof. Dr. N. Ebeling Boundary Layer Theory - 4 -

1.2) Friction

Moving fluid : ( Couette - flow )

Newton fluid

Schlichting :

1.3) Dimensionless numbers :

Reynolds number

Re ~

Page 7: Boundary Layer Theory

u dx dy dz u

xRe ~

dx dy dzy

dm∂

ρ∂

∂τ

�����

i i i i i

i i i

υ

u u ~ ; =

y y

u

x d yη

τ∞ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ i

u ~

y dyη

τ ∞∂ ∂ ∂ ∂ i

v dRe =

νi with =

ην

ρ

Prof. Dr. N. Ebeling Boundary Layer Theory - 5 -

or any comparable speed v else

laminar flow : high friction forces,low inertial forces

avoided by friction

deciding

2

V v

v ddRe = = v

d

ρ ρηη

i ii i

i

Page 8: Boundary Layer Theory

AA

FC =

p si

21 u

2p ρ ∞→ i i

( or ) analogouswC ζ

( )R2

m

d dp = or

dx u

2

ζ λρ

i

i

�Froude -number

vFr

g d=

i

Rw

FC =

p si

Prof. Dr. N. Ebeling Boundary Layer Theory - 6 -

ascending force

s

Bernoulli :

Pipe :

Gravity influence :

Page 9: Boundary Layer Theory

ν

64 =

ReR

ζ

r dp du = = - 2 dx dr

− τ ηi i

22R dp ru(r) = - 1

4 dx R

η

i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 7 -

1.4) Laminar flow in a tube extremely high

nearly no initial forces, no influence of dm or ρ !

Hagen-Poisseulle :

Derivation :

Integration with u (r = R) = 0 leads to :

2

d dp 64 64 = =

dx v d v d v

2

η νρ ρ

i ii

i i ii

2 2dpp r - p + dx r - 2 r dx = 0

dx

π π τ π

i i i i i

Page 10: Boundary Layer Theory

v + = 0

y

u

x

∂ ∂

∂ ∂

R

0

V = u (r) 2 drπ∫ i i

4 R dpV = -

8 dx

π η

i ii

2

2

V R pu = =

R 8 l

π η

i

i i

( )u 2RRe =

ρ

η

i i

64 = laminar !!

Reξ

Prof. Dr. N. Ebeling Boundary Layer Theory - 8 -

2) Conservation equations

Important conservation equations for describing continuous flow ( cartesian coordinates ) :

2.1) Mass balance for ρ = const.

212

p d =

u l

∆ξ

ρi

i i

Page 11: Boundary Layer Theory

1 y zu ∆ ∆i i 2 = u y z∆ ∆i i 2 + v x z∆ ∆i i

( )1 2 2u - u y = + v x ∆ ∆i i

u p u = -

x xρ

∂ ∂

∂ ∂i i

x

Du udV = dV u = + dF

Dt x

∂ρ ρ

∂i i i i i

u v + = 0

x y

∆ ∆∆ ∆

Prof. Dr. N. Ebeling Boundary Layer Theory - 9 -

2.2) Euler's and Bernoulli's equations

Eulers equation ( one direction, pipe ):

Integration : W = F • l leads to Bernoulli's equation

Page 12: Boundary Layer Theory

x

u - p u = + f

x x

∂ ∂ρ ρ

∂ ∂i i i

22 2 2

1 1 1

u = p - g h

2ρ ρi i i

( ) = dy dx dzR

dFy

τ∂

∂i i i

u u p u + v = -

x y x

DuDt

∂ ∂ ∂ρ ∂ ∂ ∂

�������

i i i

v↑

Prof. Dr. N. Ebeling Boundary Layer Theory - 10 -

Mechanical energy balance : Bernoulli incl. hydrostatics

Euler (2 directions ):

v leads to a higher value of u

2.3) Navier - Stokes - equation

Bernoulli and Euler neglect friction

u

yητ ∂

=∂i

Page 13: Boundary Layer Theory

2 2

x 2 2

u u p u + v = f - + +

x y x

u u

y xρ ρ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

i i i i

2 2

y 2 2

p v + u = f - + +

v v v v

y x y y xρ ρ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 11 -

Navier - Stokes - Equations ( Can be simplified in a boundary layer (later))

3) Introduction to Boundary layers 3.1) Boundary layers on a flat plate

No influence of the viscosity but directly on the wall

Boundary layer phenomena :

( Schlichting )

2 2

2 2

u = +

yR

uf

∂ ∂ ∂ ∂ i

x Rx

Du p = f - + f

Dt xρ ρ

∂i i

Page 14: Boundary Layer Theory

2

2

u u ~

x∞ ∞ρ η

δi i

x ~

u

νδ

i

2

u u ~ ; ~

u

x x yη

δτ∞ ∞∂ ∂

∂ ∂i

2 2

2

u u = =

u

x y yρ η

τ∂ ∂ ∂

∂ ∂ ∂i i i

99 (x)

x = 5

u

νδ

ii

Prof. Dr. N. Ebeling Boundary Layer Theory - 12 -

Thickness of a boundary layer, laminar on a plate

inertial force = friction force ( Navier -Stokes )

( ) = f xδ

u→∞

Page 15: Boundary Layer Theory

( )i

y = 0

(x) = U - u(x,y) dy U δ∞

∫i i

valuelow

99 is arbitraryδ

99 (x) 5 x =

lRel

δi

Prof. Dr. N. Ebeling Boundary Layer Theory - 13 -

Dimensionless :

A non - arbitrary value : displacement thickness

3.2) Friction forces on a plate :

high value

99

1 3

iδ δ≈ i

Page 16: Boundary Layer Theory

u( ) =

yw

w

x ητ ∂

∂ i

W Ww

2

S(Surface)

F F = c = =

E u b l

2∞

ζρi i

( )l

W W

0

F = b x dxτ∫i i

l 1

3 2W

0

F ~ b u x dx−

∞µ ρ ∫i i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 14 -

xu

~ with ~ u

w

ηρ

η δδ

τ ∞

i

i

3 u ~ w

x

η ρτ ∞i i

1

3 2W

F ~ b u 2 l∞µ ρi i i i i

3

24 2

b 2 u l ~

b u l4

wc

η ρ

ρ∞

i i i i i

i i i

Page 17: Boundary Layer Theory

l ~

Rew

c

1,1328 =

Rew

c

Prof. Dr. N. Ebeling Boundary Layer Theory - 15 -

3.3) Boundary layer on an obstacle :

Navier - Stokes :

Far away from the obstacle (stream line) :

( )dU l dpU = - no friction

dx dxρi i

dU dp and are related to Bernoulli

dx dx

Page 18: Boundary Layer Theory

= w dsΓ ∫ i�

Prof. Dr. N. Ebeling Boundary Layer Theory - 16 -

4) Potential and Stream functions

For describing vortex streams ( and comparable ) :

Circulation :

Potential streams (no friction ) : no rotation

Mass balance ; conservation equation :

11

2

2

v = =

t x

= = -t

1 v u = -

2 x y

u

y

γω

γω

ω

∂ ∂∂ ∂∂ ∂

∂ ∂

∂ ∂ ∂ ∂

v u = 0 ; - = 0

x yω

∂ ∂

∂ ∂

v + = 0

y

u

x

∂ ∂

∂ ∂

Page 19: Boundary Layer Theory

u = ; v = - y x

∂Ψ ∂Ψ

∂ ∂

+ - = 0y xx y

∂ ∂Ψ ∂ ∂Ψ ∂ ∂ ∂ ∂

2 2

2 2 + = 0

x y

∂ Ψ ∂ Ψ

∂ ∂

= ; v = y

ux

φ φ∂ ∂

∂ ∂

Prof. Dr. N. Ebeling Boundary Layer Theory - 17 -

Stream function (definition ) :

Conservation equation :

No rotation :

Potential function :

Potential streams

1 v u v u = - ; - = 0

2 x y x y

∂ ∂ ∂ ∂ω ∂ ∂ ∂ ∂

i

Page 20: Boundary Layer Theory

2 2

2 2

u u + = 0

x y

∂ ∂

∂ ∂

( )p = f u, v

2

2

v u u v - - + = 0

y x y x x x y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

u u p u + v = - + 0

x y x

∂ ∂ ∂ρ ∂ ∂ ∂ i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 18 -

Streams without any rotation :

also conservation equation :

Insert in Navier - Stokes :

leads to Bernoulli for v = 0 - no friction ! - no rotation - no friction

v u - = 0

x y

∂ ∂

∂ ∂

u v + = 0

x y

∂ ∂

∂ ∂

Page 21: Boundary Layer Theory

2 2v u - = 0 - = 0

x y x y x y

∂ ∂ ∂ Φ ∂ Φ↔

∂ ∂ ∂ ∂ ∂ ∂

2 2

2 2 + = 0

x y

∂ Φ ∂ Φ

∂ ∂

Prof. Dr. N. Ebeling Boundary Layer Theory - 19 -

Model frequently used : On the obstacle : boundary layer in the vicinity , but outside the layer : no friction

potential function :

No rotation :

Conservation equations :

Stream function :

Conservation equations o.k.

u = ; v = x y

∂Φ ∂Φ

∂ ∂

u = ; v = - y x

∂Ψ ∂Ψ

∂ ∂

Page 22: Boundary Layer Theory

= w dsΓ ∫��

i�

Prof. Dr. N. Ebeling Boundary Layer Theory - 20 -

from definition :

Stream line : ( no v : ) -> ψ = constant

Circulation :

Example :

here : Γ = 0 ( all possible ways )

airfoil : high speed

low speed

u + v = 0x y

∂Ψ ∂Ψ∂ ∂

i i

0Γ ≠

Page 23: Boundary Layer Theory

( ) = 2 r rΓ π ωi i iPotential- and flowfunctions as well as velocitys for some elementary potential flows

flow streamline

translational flow

source flow

( productiveness E )

potential vortex stream

( circulation I' )

source-drain flow

( productiveness E, distance h )

dipole flow

( dipole moment M )

( )x,yΦ ( )x,yΨ ( )u x,y ( )v x,y

U x + V y∞ ∞

E ln r

2

Γ ϕπ

1

2

E r ln

2 rπ

2

M x

2 rπ

U y - V x∞ ∞

E

π

ln r2

Γ−π

( )1 2

E -

2ϕ ϕ

π

2

M y

2 r−

π

U∞

2

E x

2 rπ

2

y

2 r

Γ−π

2 2

1 2

E x + h x -

2 r r

π

2 2

4

M y - x

2 rπ

V∞

2

E y

2 rπ

2

x

2 r

Γπ

2 2

1 2

Ey 1 1 -

2 r r

π

4

M 2xy 2 r

−π

l

rw ~ = 0Γ

Prof. Dr. N. Ebeling Boundary Layer Theory - 21 -

assumption : ; obviously :

One exception : including the centre :

(see also: Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 130 )

Page 24: Boundary Layer Theory

radyield : E = w 2 rπi i

for x = r : E = u 2 xπi i

Eu =

2 x ( or r )π

2 2E = ln x + y

πi

2 2 2 2

E 1 1 1u = = 2x

x 2 2x + y x + y

∂Φ∂ π

i i i i

2

E xu =

2 rπi

E E y = = arctg

2 2 x

Ψ ϕ π π

i i

E yu = = arctg

y 2 y x

∂Ψ ∂ ∂ π ∂

i

radspring : V = w 2 r hπ i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 22 -

Spring :

Page 25: Boundary Layer Theory

2

1 arctg x =

x 1 + x

( )( )

y

x

y

x

u = x

∂ ∂Ψ

∂ ∂i

Prof. Dr. N. Ebeling Boundary Layer Theory - 23 -

Bronstein :

the rest is the same

For application :

airfoil :

( )2

2 2y

x

E 1 1 xu =

2 x x1 + πi i i

2

E xu =

2 rπi

stream = of model streams∑

Page 26: Boundary Layer Theory

AF =b l p∆i i

( )

2

A

1F =b l 2u

2∞ρi i i i

2

AF = 2 l b u∞ρi i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 24 -

5) Law of Kutta - Joukowski

simple example : flat plate :

Kutta - Joukowski

= 2 u l∞Γ i i

AF = b u∞Γ ρi i i

Page 27: Boundary Layer Theory

: u = Uy ∞→ ∞

2

2

u u + v =

x y

uu

∂ ∂ ∂

∂ ∂ ∂i i i

= 0 : u = 0, v = 0y

u

y

x ν

i

Prof. Dr. N. Ebeling Boundary Layer Theory - 25 -

6) Exact calculation of the Boundary layer thickness

Boundary layer on a plate :

For similarity y/δ (x) is important

v + = 0

y

u

x

∂ ∂

∂ ∂

( ) x v x ~

i

Page 28: Boundary Layer Theory

m = =

y m yu

∂Ψ ∂Ψ ∂

∂ ∂ ∂i

( ) = u f mu ∞ ′i

( )1 1 = 2 u f m

2 xxν ∞

∂Ψ

∂i i i i i

= y 2 x

um

ν∞ii i

( ) = 2 x f m 2 x

uu uν

ν∞

∞ ′i i i i ii i

Prof. Dr. N. Ebeling Boundary Layer Theory - 26 -

Definition :

( the factor 2 is arbitrary but helpful )

Idea :

Stream function :

= - x

v∂Ψ

( ) = 2 x u f mν ∞Ψ i i i i

( )�

Schlichtingsays

dimensionlessstream function

= 2 x u f m∞

η

Ψ ν���

i i i i

Page 29: Boundary Layer Theory

( ) m 2 x u f m

xν ∞

∂ ′+ ∂ i i i i i

3-2

u 1 = y - x

2 2

m

x ν∞∂

∂ i i i

i

3-

122

u u = f - y x x

x 2 x 2 x∞ ∞

ν∂Ψ ∂ ν

ii i i i i

i i i

( ) uv = - = m f - f

x 2 x∞ν∂Ψ ′

∂i

i ii

( )3

-2

1 = u f m y - x

2 2

uu

x ν∞

∞∂ ′′ ∂

i i i i ii

u v = m f - f

2 x y 2 x

u

y y

ν ν∞ ∞ ∂ ∂ ∂′

∂ ∂ ∂

i ii i i

i i

( ) 1 = f m -

2 x

uu m

x∞

∂ ′′ ∂ i i i

i

( ) 2 x u f m∞′νi i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 27 -

6.1) Conservation of mass (continuity equation)

Page 30: Boundary Layer Theory

u u u u uv = f + y f

2 x 2 x 2 x 2 x 2 x

m

y

ν νν ν ν

∞ ∞ ∞ ∞ ∞∂ ′ ′′∂

�����

i ii i i i i

i i i i i i i i

u v + = 0

x y

∂ ∂⇒

∂ ∂

( ) = m f - f

2 x

uv

ν ∞ ′ii i

i

( ) = f mu u∞ ′i

( ) 1 = f m m -

2 x

uu

x∞

∂ ′′ ∂ i i i

i

( ) uu = u f m

y 2 x∞

∂ ′′∂ ν

i ii i

Prof. Dr. N. Ebeling Boundary Layer Theory - 28 -

Conti - equation

6.2) Navier-Stokes and Blasius equations

Navier-Stokes for the boundary layer on a flat plate :

f

2 x 2 x

u uνν

∞ ∞′−i

i ii i i

( ) 1 = m f m

2 x

vu

y∞

∂ ′′∂

i i ii

Page 31: Boundary Layer Theory

( )2

2 = f m

2 x 2 x

u uuu

y ν ν∞ ∞

∞∂ ′′′∂

i i ii i i i

2

2

u u uu + v =

x y y

∂ ∂ ∂ν

∂ ∂ ∂i i i

f + f f = 0

Blasius - Equation

′′′ ′′i

m = 0 f = 0 , f = 0

m : f = 1

′→ ∞

( )m = 0 i.e. y = 0 u = 0 and f = 0′

( )m i.e. y u = u and f = 1∞ ′→ ∞ → ∞

( ) uv = m f - f

2 x∞ν ′ii i

i

for y = 0 v and f have to be 0⇒

Prof. Dr. N. Ebeling Boundary Layer Theory - 29 -

with :

Inserting and differentation leads directly to :

side conditions :

( )u = u f m∞ ′i

Page 32: Boundary Layer Theory

characteristic parameters for the boundary layer on a

longitudinal flown plate

0,4696

1,2168

0,4696

0,7385

( )1 = lim - fη β → ∞ η η

wf ′′

( )2

0

= f 1 - f d∞

′ ′β η∫

Prof. Dr. N. Ebeling Boundary Layer Theory - 30 -

There is a function f(m), but there is no equation. description of f(m) : Thickness of the boundary layer :

(see also : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 158 )

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 159 )

Page 33: Boundary Layer Theory

2

99 = y for u = 0.99 u∞δ i

99 = y for f = 0.99′δ

Prof. Dr. N. Ebeling Boundary Layer Theory - 31 -

(see also : Incropera, F.P.; DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 4th Ed., page 352 )

Attention : f and η deviate from Schlichting in factor !

Flat plate laminar boundary layer functions

0,0 0,0000 0,000 0,470

0,4 0,0191 0,133 0,468

0,8 0,0750 0,265 0,462

1,2 0,1683 0,394 0,448

1,6 0,2970 0,517 0,420

2,0 0,4596 0,630 0,378

2,4 0,6520 0,729 0,322

2,8 0,8704 0,812 0,260

3,2 1,1095 0,876 0,197

3,6 1,3647 0,923 0,139

4,0 1,6306 0,956 0,091

4,4 1,9035 0,976 0,055

4,8 2,1814 0,988 0,031

5,2 2,4621 0,994 0,016

5,6 2,7436 0,997 0,007

6,0 3,0264 0,999 0,003

6,4 3,3086 1,000 0,001

6,8 3,5914 1,000 0,000

f um = y

x∞

ν

df u =

dm u∞

2

2

d f

dm

Page 34: Boundary Layer Theory

uu = u f y

2 x∞

′ ν

ii i

w

w

uu = u f

y 2 x∞

∞ ∂ ′′ ∂ ν

i ii i

w

uu 0,4696 = u

y x2

∞∞

∂ ∂ ν

i ii

l

w w

0

F = b dxτ∫ i i

l 1

2w

0

uF = 0,332 u b x dx

−∞

∞ην ∫i i i i i i

l 1

2

0

with x dx = 2 l−

∫ i

Prof. Dr. N. Ebeling Boundary Layer Theory - 32 -

6.3) Friction :

Plate ( 1 side ) :

w

u = 0,332 u

x∞

∞τ ην

i i ii

Page 35: Boundary Layer Theory

ww

Fc

u b l 2

=ρi i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 33 -

( see also 3.2 )

7) Thermal boundary layer

Conservation equation for heat :

convection :

22

p 2

T u c u + v = +

x y

T T

y yρ λ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

i i i i i i

w

1.328c

Re=

Page 36: Boundary Layer Theory

( ) T dx dz dy

y

∂− λ ∂ i i i

( )c pQ = m c T∆ ∆ i i

( )p

Tc dy dz u dx

x

∂ ρ ∂ i i i i i i

udP = dx dz dy

y ∂

∂τ i i i i

u =

yητ ∂

∂i

Prof. Dr. N. Ebeling Boundary Layer Theory - 34 -

convection :

> 0

conduction :

< 0

friction :

> 0

Compare the conservation equations for heat with Navier-Stokes !

T A

∂− ∂ i i

Page 37: Boundary Layer Theory

2

p 2

T T T c u + v =

x y y

∂ ∂ ∂ρ λ ∂ ∂ ∂ i i i i

2

2

u u u + v =

x y y

∂ ∂ ∂η ν ∂ ∂ ∂ i i i

2

2p

2

2

u u uu + v

cx y y =

TT Tu v

yx y

∂ ∂ ∂ ν ρ∂ ∂ ∂

∂λ ∂ ∂ ∂∂ ∂

i ii i

i

i i i

2

2

2

2

u u uu + v

x y y =

TT Tu v

yx y

Pr ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂

i i

i

i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 35 -

( heat from friction neglected )

Navier-Stokes adapted to a boundary layer (see also 6) )

Page 38: Boundary Layer Theory

( )wq = T - T∞α i

w

Tq = -

y

∂λ ∂

i

u

w

T-

y =

T - T∞

∂λ ∂ α

i

( )T T

w

w

- y

= T

- 1T

∂ λ

∂ α

i

Prof. Dr. N. Ebeling Boundary Layer Theory - 36 -

For gases Pr ≈ 1. Independent from the condition u and T behave equal.

Page 39: Boundary Layer Theory

w

u

u =

y

∂ α λ

i

u = 0,4696

2 x∞α λ

νi i

i il

1

0 2

1b dx

u x = 0,4696 2 b l

∞α λν

∫i i

i i ii i

2

u 4 l = 0,4696

2 l

∞α ληρ

i ii i

i i

1+

2 = 0,664 Rel

λα i i

Nu = 0,664 Rei

wwith u = 0

Prof. Dr. N. Ebeling Boundary Layer Theory - 37 -

Page 40: Boundary Layer Theory

5Re = 5 10i

, sudden δ τ↑ ↑

Prof. Dr. N. Ebeling Boundary Layer Theory - 38 -

There is evidence that for Pr ≠ 1 :

see also : Vauck, W.R.A., Müller, H.A.: "Grundoperationen chemischer Verfahrenstechnik" , Wiley, 11th Edition (2001)

8) Mass transfer boundary layer equation

9) Turbulent Boundary layer

Plate : turbulent from on

virtual friction

turbulent layer : 2 layers

viscous sublayer

11

32Nu = 0,664 Re Pri i

2

A A AAB 2

c c cu + v = D

x y y

∂ ∂ ∂

∂ ∂ ∂i i i

Page 41: Boundary Layer Theory

fx

50 =

cRe

2

v

x

δ

i

( ) ( ) ( )( )

u x,y,t = u x,y + u x,y,t

v x,y,t = v....

u = average ; u = 0′

p (x,y,t) = p (x,y) + p (x,y,t)′

u u u u u + u + u + u + v.....

x x x x

′ ′∂ ∂ ∂ ∂ ′ ′ρ ∂ ∂ ∂ ∂ i i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 39 -

Viscous sublayer :

Turbulent boundary layers

Conservation equations :

Navier - Stokes ( for boundary layers ) :

u u v v u v + + + = 0 ; + = 0

x x y y x y

′ ′∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

Page 42: Boundary Layer Theory

u u u uu + u + v + v

x x y y

.....

′ ′∂ ∂ ∂ ∂′ ′ρ

∂ ∂ ∂ ∂

=

i i i i

( )2

2

u u du uu + v = u + - u v

x y dx y y

∂ ∂ ∂ ∂′ ′ρ ρ η ρ ∂ ∂ ∂ ∂

i i i i i i

�����

u uu = 0 , u = 0

x x

′∂ ∂′ ′

∂ ∂i i

2 2

2 2

d u u - + +

dx y y

′ ρ ∂ ∂= η ∂ ∂

Prof. Dr. N. Ebeling Boundary Layer Theory - 40 -

Average :

2 2

2 2

dp u u - + +

dx y y

′ ∂ ∂= η ∂ ∂

i

( )dp dU - U Bernoulli

dx dx= ρ i i

( )u uu + v u v

x y y

′ ′∂ ∂ ∂′ ′ ′ ′≈

∂ ∂ ∂i i i

Page 43: Boundary Layer Theory

l

u =

y

∂τ η

∂i

( )t = - u v

is usually negative

u v

′ ′τ ρ

′ ′

i i

i

t

- u v = + with =

u

y

u

y′ ′∂∂

∂τ ρ∂

ε ε ii i

~ l u

y

u ∂∂′ i

2

tu u

= l y y

∂ ∂ρ

∂ ∂τ i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 41 -

laminar sheer stress :

turbulent sheer stress :

ε : turbulent kinematic viscosity

l = length of mixing way l = f ( distance to the wall )

laminar sublayer

v ~ u′ ′

Page 44: Boundary Layer Theory

dpFlat plate : = 0

dx

du dpU = -

dx dxi

Prof. Dr. N. Ebeling Boundary Layer Theory - 42 -

Degree of turbulence :

10) Burbling

Stream line along a body different from a flat plate outside the boundary layer ( no friction : )

( see Bernoulli and Navier-Stokes )

( )2 2 213

u

u + v + w T =

u∞

′ ′ ′i

Page 45: Boundary Layer Theory

2

2

u u dp u u + v = - +

x y dx y

∂ ∂ ∂ρ η ∂ ∂ ∂ i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 43 -

low speed - high pressure

When friction and pressure increase, debonding occurs.

In the layer :

2

2

dp uIf has a high value, must

dx y

become positive

Page 46: Boundary Layer Theory

Prof. Dr. N. Ebeling Boundary Layer Theory - 44 -

Result :

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 37 )

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 39 )

Page 47: Boundary Layer Theory

burbling from

point A on

Prof. Dr. N. Ebeling Boundary Layer Theory - 45 -

Turbulent flow : η + ε · ρ instead of η : burbling occurs later

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 110 )

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 111 )

Page 48: Boundary Layer Theory

w c = 0→

u D u DRe = =∞ ∞ρ

η ν

i i i

laminar→

laminar, but burbling→

} turbulent

ww 2

2

sphere :

Fc =

u D

2 4∞ π

ρi i i

w c = 0→

Prof. Dr. N. Ebeling Boundary Layer Theory - 46 -

creeping flow :

d'Alembert : no friction (and no burbling)

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 114 )

(nach : Gersten, K. : Einführung in die Strömungsmechanik,Bertelsm. Univ.Verlag, 1st edition, page 112 )

Page 49: Boundary Layer Theory

f d =

uSr

i

Prof. Dr. N. Ebeling Boundary Layer Theory - 47 -

Periodic stream due to debonding :

Strouhal - Number :

Page 50: Boundary Layer Theory

Prof. Dr. N. Ebeling Boundary Layer Theory - 48 -

11) Bibliography

- Gersten, K. : Einführung in die Strömungsmechanik, Shaker; 1st edition (2003), ISBN-13: 978-3832210397

- Schlichting, H., Gersten, K. : Grenzschicht - Theorie, Springer Verlag, 10th edition (2006), ISBN-13: 978-3540230045

- Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 5th edition (2001) , ISBN-10: 9755030654

- Vauck, W.R.A., Müller, H.A.: "Grundoperationen chemischer Verfahrens- technik" , Wiley, 11th Edition (2000), ISBN -10: 3527309640

- Bronstein, I.N., Semendjajew, K.A., Musiol, G., Muehlig, H. : Taschenbuch der Mathematik, Deutsch, 7th edition (2008) , ISBN-13: 978-3817120079

12) Acknowledgment

I would like to thank my student assistant Matthias Kemper for his contribution to this work.


Recommended