Transcript
Page 1: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

Institut für Werkzeugmaschinenund BetriebswissenschaftenProf. Dr.-Ing. M. ZähProf. Dr.-Ing. G. Reinhart

DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON BEAM SINTERING (EBS)

Hannover, November 6th 2008European Comsol Conference

Dipl.-Ing. Markus Kahnert

Presented at the COMSOL Conference 2008 Hannover

Page 2: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 2© iwb 2008

1. Introduction – Electron Beam Sintering (EBS)2. Objective of the present work3. Mathematical model

- Overview- Heat Source Model- Material Properties

4. Numerical Model5. Simulation Results and Discussion6. Conclusion

Outline

Page 3: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 3© iwb 2008

1. Introduction – Electron Beam Sintering (EBS)2. Objective of the present work3. Mathematical model

- Overview- Heat Source Model- Material Properties

4. Numerical Model5. Simulation Results and Discussion6. Conclusion

Outline

Page 4: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 4© iwb 2008

Electron beam sintering

Electron Beam Sintering

electron beam generator

electron beam

building volume

building plate

building volumewith metal-powder

sintered layer

building plate

part

preheatedarea

new layer ofmetal powder

divergence of the electron beam

focusedelectron beam

sinteredlayer

re-coating preheating scanningwith different

strategies

Page 5: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 5© iwb 2008

Electron Beam Sintering (EBS)

Potentials of the electron beam

High beam power and energy densityFast, massless beam deflection„Quasi-simultaneous“ beam exposureUniform insertion of energyOpen configurable beam figures

Vacuum chamber

Beam generator

Mechanical pumps

Page 6: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 6© iwb 2008

1. Introduction – Electron Beam Sintering (EBS)2. Objective of the present work3. Mathematical model

- Overview- Heat Source Model- Material Properties

4. Numerical Model5. Simulation Results and Discussion6. Conclusion

Outline

Page 7: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 7© iwb 2008

Objective of the present work

Process stability• Metal parts production• Two major deficiencies can be observed

- Balling- Delamination

Process cannot be examined due to accessibility and resolution of thermography unit

Understanding of the process needs to be enhanced

Analysis of the beam-material interaction by means of FEA

Balling

Delamination

Page 8: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 8© iwb 2008

1. Introduction – Electron Beam Sintering (EBS)2. Objective of the present work3. Mathematical model

- Overview- Heat Source Model- Material Properties

4. Numerical Model5. Simulation Results and Discussion6. Conclusion

Outline

Page 9: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 9© iwb 2008

Mathematical Model

Overview

MathematicalModel

FEM-Simulation

Resultanalysis

Knowledge to use in real process

Powderproperties

Temperatur [K]

Zeit [s]

Validation

time [s]

temperature [K]

0

20

40

60

80

273 773 1273 1773Temperatur [K]

heat conductivity [W/(mK)]

Page 10: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 10© iwb 2008

time=0.002 isosurface: heat source [W/m³]

Heat Source Model

• Horizontal intensity according to a Gaussian distribution

• Vertical intensity follows a 2nd degree polynom

• Power efficiency: 78%

• Superposition

• Penetration depth at given accelerating voltage and powder density: 62 µm

• Moving Heat Source at constant velocity

Mathematical Model

Page 11: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 11© iwb 2008

Temperature Dependence of Material Properties

0

20

40

60

80

273 773 1273 1773Temperatur [K]

heat conductivity [W/(mK)]

0,980,940,860,830,810,80,78ε

13961208755680569481333T [K]

emissity of metal powder

• Thermomechanical properties of metal powders are not common knowledge due to trade secrets and multitude of powders

• Experiments and analytical models available

• Heat capacity is similar to that of massive material

• Heat conductivity and emissivity modelled and validated

Mathematical Model

Page 12: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 12© iwb 2008

1. Introduction – Electron Beam Sintering (EBS)2. Objective of the present work3. Mathematical model

- Overview- Heat Source Model- Material Properties

4. Numerical Model5. Simulation Results and Discussion6. Conclusion

Outline

Page 13: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 13© iwb 2008

Numerical Model

Numerical Model

solidified material

powder material

model lengthtrace widthpowder layerthickness

electron beam(Ib, Ua, vs)

powder(tl, υp )

hatch distance h

x

yz

solid materialmelt line

Square to bemeleted

beam spotdiameter db

Part

Scanning pattern

Model

Meshed modelThermal analysis

Page 14: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 14© iwb 2008

1. Introduction – Electron Beam Sintering (EBS)2. Objective of the present work3. Mathematical model

- Overview- Heat Source Model- Material Properties

4. Numerical Model5. Simulation Results and Discussion6. Conclusion

Outline

Page 15: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 15© iwb 2008

Simulation Results and Discussion

Objective of the Simulation

0.1 mmhhatch distance

0.1 m/svsscan speed

1353 Kυppreheating temperature

100 µmtllayer thickness

200 µmdbbeam spot diameter

1 mAIbbeam current

100 kVUaaccelerating voltage

ValueVariableProcess parameter

1.0·10-04 mpowder layer thickness

2.0·10-03 mmodel length

2.0·10-04 mtrace width

6.2·10-05 mSEB penetration depth

ValueVariableModel parameter

Starting Conditions and Process Parameters

• Calculation of the size and shape of the melt pool

• Simulation of the heat distribution within one melt line

Powder: 3.4 g/cm³Massive: 7,9 g/cm³

Density

20-63 µmGrain Size

316L (1.4404)Material

ValueMaterial parameters

Page 16: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 16© iwb 2008

Simulation Results and Discussion

Heat distribution within one melt linetemperature [K] @ various depths

x=0 m; y=1*10-3 m; z=0 mx=0 m; y=1*10-3 m; z=-1*10-4 mx=0 m; y=1*10-3 m; z=-2*10-4 m

• Simulation of the transient temperature distribution in the center of a melt line at various depths

• Complete melting of a layer at point z=-1*10-4 m (= layer thickness)

• After the powder has reached melting temperature, the layer thickness decreases proportional to its density increase

TS= 1699 K

Page 17: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 17© iwb 2008

Simulation Results and Discussion

Calculation of the size and shape of the melt pool

L/W=3.8

mm

time=0.002 sisosurface: temperature [K]

solid

vBeam=const. electronbeam

liquid

system boundary

phase 1preheated powder

phase 2heat input

phase 3liquid

phase 4phase change

phase 5solid

solid

vBeam=const. electronbeam

liquid

system boundary

phase 1preheated powder

phase 2heat input

phase 3liquid

phase 4phase change

phase 5solid

• Calculation of the Size and shape of the melt pool according to real process parameters

• L/W-ratio is 3.8, no balling observed

• in comparison: 2.1 in laserbeam-based processes (SLM, DMLS, etc.)

• Possible reasons:- preheating temperature- vacuum in the process area- different beam-material interaction

• Research efforts to be done

Page 18: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 18© iwb 2008

1. Introduction – Electron Beam Sintering (EBS)2. Objective of the present work3. Mathematical model

- Overview- Heat Source Model- Material Properties

4. Numerical Model5. Simulation Results and Discussion6. Conclusion

Outline

Page 19: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 19© iwb 2008

Conclusion

Manufacturing of EBS parts only possible with considerable process knowledge

Simulation carried out in order to evaluate necessary beam power and other process parameters

FE-Modelling of the energy input based on a mathematical abstracted heat sourceand a discretized powder bed is an effective tool

Differences between Laser- and Electron Beam-based processes discovered

Model can be transferred to alternative additive layer manufacturing technologies

Page 20: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

Institut für Werkzeugmaschinenund BetriebswissenschaftenProf. Dr.-Ing. M. ZähProf. Dr.-Ing. G. Reinhart

Dipl.-Ing. Markus Kahnert

Telefon +49 (0) 821 / 5 68 83 - 33 Telefax +49 (0) 821 / 5 68 83 - 50 E-Mail: [email protected]

Adresseiwb Anwenderzentrum AugsburgBeim Glaspalast 586153 Augsburg www.iwb-augsburg.de

Kontakt:

Page 21: DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON … · 2009. 1. 29. · Beam=const. electron beam liquid system boundary phase 1 preheated powder phase 2 heat input phase 3 liquid

12.11.2008 Seite 21© iwb 2008

Requirements in production technology

innovative technologies for an economicmanufacturing of complex parts (powder based manufacturing methods – SLM, DMLS, EBS)

wide range of processable materials (high quality steel, titanium alloys, aluminum alloys)

efficient numerical methods for virtual design of manufacturing processes – Finite-Element-Analysis (FEA)

customized, complex products

powder based manufacturing processes

engine componentmold insert for injection dies

source: ConceptLaser

source: DaimlerChrysler

Mega-trends:Demand for individualization of products increases (“mass customisation”)Products become more complexLife cycles shorten


Recommended