Transcript
Page 1: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Maximizing Time-decaying Influence

in Social Networks

2016/9/22 ECML-PKDD 2016

Naoto Ohsaka (UTokyo)

Yutaro Yamaguchi (Osaka Univ.)

Naonori Kakimura (UTokyo)

Ken-ichi Kawarabayashi (NII)

ERATO Kawarabayashi Large Graph Project

Page 2: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Given

โ–ถ Social graph ๐บ = ๐‘‰, ๐ธโ–ถ Diffusion model โ„ณโ–ถ Integer ๐‘˜

Goal

โ–ถ maximize ๐œŽโ„ณ ๐‘† ( ๐‘† = ๐‘˜)๐œŽโ„ณ ๐‘† โ‰” ๐„[size of cascade initiated by ๐‘† under โ„ณ]

Influence maximization[Kempe-Kleinberg-Tardos. KDD'03]

2

Viral marketing application[Domingos-Richardson. KDD'01]

incentive

incentive

incentive

Page 3: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Formulation by[Kempe-Kleinberg-Tardos. KDD'03]

3

Used classical diffusion models

independent cascade [Goldenberg-Libai-Muller. Market. Lett.'01]

linear threshold [Granovetter. Am. J. Sociol.'78]

๏ผ‹ Tractable

Monotonicity & submodularity of ๐œŽ โ‹…[Kempe-Kleinberg-Tardos. KDD'03]

Near-linear time approx. algorithms[Borgs-Brautbar-Chayes-Lucier. SODA'14] [Tang-Shi-Xiao. SIGMOD'15]

๏ผ Too simple

No time-decay effects, no time-delay propagation

โˆ€๐‘‹ โŠ† ๐‘Œ, ๐‘ฃ โˆ‰ ๐‘Œ๐œŽ ๐‘‹ โˆช ๐‘ฃ โˆ’ ๐œŽ ๐‘‹ โ‰ฅ ๐œŽ ๐‘Œ โˆช ๐‘ฃ โˆ’ ๐œŽ ๐‘Œ

Page 4: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

The power of influence (rumor)

depends on arrival time

decreases over time

Our aspect : Time-decay effects

4

Our question

What if incorporate time-decay effects?Monotonicity? Submodularity? Scalable algorithm?

Time-delay propagations have been studied[Saito-Kimura-Ohara-Motoda. ACML'09] [Goyal-Bonchi-Lakshmanan. WSDM'10]

[Saito-Kimura-Ohara-Motoda. PKDD'10] [Rodriguez-Balduzzi-Schรถlkopf. ICML'11]

[Chen-Lu-Zhang. AAAI'12] [Liu-Cong-Xu-Zeng. ICDM'12]

Time-decay effects have not much โ€ฆ[Cui-Yang-Homan. CIKM'14] No guarantee for influence maximization

u

Incentive

vDay 1

v

s uDay 2

Day 1

Incentive

Page 5: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Our contribution

5

Generalize independent cascade & linear threshold with

Time-decay effects & Time-delay propagationNon-increasing probability Arbitrary length distribution

Diffusion process of TV-ICReachability on a random

shrinking dynamic graph=โ–ถ Characterization

โ–ถ Monotonicity & submodularity of ๐œŽTVIC โ‹…

โ–ถ Scalable and accurate greedy algorithmsbased on reverse influence set [Tang-Shi-Xiao. SIGMOD'15]

๐’ช ๐‘˜ ๐ธ + ๐ธ 2

๐‘‰

log2 |๐‘‰|

๐œ–2time & 1 โˆ’ eโˆ’1 โˆ’ ๐œ– -approx.

Essential

Page 6: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Time-varying independent cascade (TV-IC) model

๐บ = ๐‘‰, ๐ธ Social graph

๐’‘๐’–๐’— Non-increasing probability function

๐’‡๐’–๐’— Arbitrary length distribution

6

Objective function

๐œŽTVIC ๐‘† โ‰” ๐„[# active vertices initiated by ๐‘†]

0. ๐‘ข became active at ๐‘ก๐‘ข1. Sample a delay ๐›ฟ๐‘ข๐‘ฃ from ๐’‡๐’–๐’—

v

Incentive

u

s

time ๐‘ก๐‘ข

Page 7: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

0. ๐‘ข became active at ๐‘ก๐‘ข1. Sample a delay ๐›ฟ๐‘ข๐‘ฃ from ๐’‡๐’–๐’—2A. Success w.p. ๐’‘๐’–๐’— ๐’•๐’– + ๐œน๐’–๐’—

๐‘ฃ becomes active at ๐‘ก๐‘ข + ๐›ฟ๐‘ข๐‘ฃ

Time-varying independent cascade (TV-IC) model

๐บ = ๐‘‰, ๐ธ Social graph

๐’‘๐’–๐’— Non-increasing probability function

๐’‡๐’–๐’— Arbitrary length distribution

7

v

Incentive

u

s

time ๐‘ก๐‘ข time ๐‘ก๐‘ข + ๐›ฟ๐‘ข๐‘ฃ

Objective function

๐œŽTVIC ๐‘† โ‰” ๐„[# active vertices initiated by ๐‘†]

Success

Page 8: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

0. ๐‘ข became active at ๐‘ก๐‘ข1. Sample a delay ๐›ฟ๐‘ข๐‘ฃ from ๐’‡๐’–๐’—2B. Failure w.p. ๐Ÿ โˆ’ ๐’‘๐’–๐’— ๐’•๐’– + ๐œน๐’–๐’—

๐‘ฃ remains inactive

Time-varying independent cascade (TV-IC) model

๐บ = ๐‘‰, ๐ธ Social graph

๐’‘๐’–๐’— Non-increasing probability function

๐’‡๐’–๐’— Arbitrary length distribution

8

v

Incentive

u

s

time ๐‘ก๐‘ข

Objective function

๐œŽTVIC ๐‘† โ‰” ๐„[# active vertices initiated by ๐‘†]

Failure

Page 9: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Characterization of the IC model[Kempe-Kleinberg-Tardos. KDD'03]

9

๐‘† influences ๐‘งin the IC process

๐‘† can reach ๐‘งin a random subgraph ๐บโ€ฒโ‡”

S z S z

No need to consider time

Page 10: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

โ–ถ Dynamic โ€ฆ

๐บt changes over time

โˆต ๐‘๐‘ข๐‘ฃ changes over time

โ–ถ Shrinking โ€ฆ

๐บt has only edge deletions

โˆต ๐‘๐‘ข๐‘ฃ is non-increasing

Characterization of the TV-IC model

10

๐‘† influences ๐‘งin the TV-IC process

๐‘† can reach ๐‘ง in a random

shrinking dynamic graph ๐บtโ‡”

S z S z

S z

S z

time 1

time 2

time 3

Page 11: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Monotonicity & submodularity of ๐œŽTVIC(โ‹…)

11

โ‡ Greedy algorithm is 1 โˆ’ eโˆ’1 -approx.[Nemhauser-Wolsey-Fisher. Math. Program.'78]

๐œŽTVIC ๐‘† = ๐„๐บt # vertices reachable from ๐‘† in ๐บt

Our results : Monotone & submodularShrinking is a MUST

๐‘† influences ๐‘งin the TV-IC process

๐‘† can reach ๐‘ง in a random

shrinking dynamic graph ๐บtโ‡”

Page 12: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Reverse influence set [Tang-Shi-Xiao. SIGMOD'15]

๐‘…๐‘– โ‰” {vertices that would have influenced ๐‘ง๐‘–}

๐œŽ ๐‘† โˆ ๐„[# sets in โ„› intersecting ๐‘†]

Efficient approximation of ๐œŽTVIC โ‹…

12

โ†‘ chosen u.a.r.

BFS-like alg. for the IC [Borgs-Brautbar-Chayes-Lucier. SODA'14]

Dijkstra-like alg. for the continuous IC [Tang-Shi-Xiao. SIGMOD'15]

Cannot be applied to our model

โ„› =

Greedy algorithm requires estimations of ๐œŽTVIC โ‹…

a

bz1

ca

f

z3

az2

๐‘…1 ๐‘…2 ๐‘…3

Page 13: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Naive reverse influence set generation

under the TV-IC model

13

๐‘ฃ โˆˆ ๐‘…๐‘–๐‘ฃ can reach ๐‘ง๐‘– in a random

shrinking dynamic graphโ‡”

โ‡ ฮฉ ๐‘‰ โ‹… ๐ธ time

Check each vertex separately

Page 14: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Efficient reverse influence set generation

under the TV-IC model

14

Computing ๐œ ๐‘ฃโ ๐‘ฃ must pass through ๐‘ฃ,๐‘ค for some ๐‘ค to reach ๐‘ง๐‘– โž

๐œ ๐‘ฃ = max๐‘ฃ,๐‘ค โˆˆ๐ธ

min ๐œ ๐‘ค โˆ’ ๐›ฟ๐‘ฃ๐‘ค, ๐‘๐‘ฃ๐‘คโˆ’1 ๐‘ฅ๐‘ฃ๐‘ค

๐‘ฃ โˆˆ ๐‘…๐‘– ๐‰ ๐’— โ‰ฅ ๐ŸŽโ‡”

Key = latest activation time ๐œ ๐‘ฃmax. ๐œ ๐‘ฃ s.t. (๐‘ฃ gets active in ๐œ ๐‘ฃ ) โ‡ (๐‘ง๐‘– gets active)

Dynamic programming yields

+โˆž = ๐œ ๐‘ง๐‘– โ‰ฅ ๐œ ๐‘ฃ1 โ‰ฅ โ‹ฏ โ‰ฅ ๐œ ๐‘ฃ๐‘Ÿ โ‰ฅ 0

v

w1

w2

w3

zi

Page 15: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Performance analysis

15

Lemma 2 Correctness

Lemma 3 Running time = ๐’ช ๐ธ โ‹…OPT

๐‘‰log ๐‘‰ in exp.

Theorem 4

Our reverse influence set generation method +

IMM (Influence Maximization via Martingales) framework[Tang-Shi-Xiao. SIGMOD'15]

1 โˆ’ eโˆ’1 โˆ’ ๐œ– -approx. w.h.p.

๐’ช ๐‘˜ ๐ธ + ๐ธ 2

๐‘‰

log2 |๐‘‰|

๐œ–2expected time

๐ธ

๐‘‰is small for real graphs

Page 16: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Experiments: Setting

โ–ถComparative algorithms

This work

IMM-CTIC[Tang-Shi-Xiao. SIGMOD'15]

IMM-IC[Tang-Shi-Xiao. SIGMOD'15]

LazyGreedy[Minoux. Optim. Tech.'78]

Degree

Efficient algorithmsunder different models

Accurately estimate๐œŽTVIC โ‹… by simulations

Simple baseline

โ–ถ๐‘๐‘ข๐‘ฃ ๐‘ก = inโˆ’deg ๐‘ฃ โ‹… ๐‘ โ‹… ๐‘ก โˆ’1

โ–ถ๐‘“๐‘ข๐‘ฃ โ‹… = (Weibull distribution) [Lawless. '02]

Page 17: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Experiments: Solution quality

17

LazyGreedy > This work > IMM-IC > IMM-CTIC > Degree

ego-Twitter |๐‘‰|=81K ๐ธ =2,421Kca-GrQc |๐‘‰|=5K ๐ธ =29K

๐œŽTVIC โ‹… of seed sets produced by each method

Bett

er

Accuracy guarantee Ignore time-decay effects

Dataset : Stanford Large Network Dataset Collection. http://snap.stanford.edu/data

Environment : Intel Xeon E5540 2.53 GHz CPU + 48 GB memory & g++v4.8.2 (-O2)

Ob

ject

ive

va

lue

Seed size k Seed size k

Ob

ject

ive

va

lue

Page 18: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Experiments: Scalability

18

Degree โ‰ซ This work โ‰ˆ IMM-IC > IMM-CTIC โ‰ซ LazyGreedy

Running time for selecting seed sets of size ๐‘˜ for each method

Quadratic timeNear-linear time

Just sorting

Bett

er

Dataset : Stanford Large Network Dataset Collection. http://snap.stanford.edu/data

Environment : Intel Xeon E5540 2.53 GHz CPU + 48 GB memory & g++v4.8.2 (-O2)

Seed size k Seed size k

ego-Twitter |๐‘‰|=81K ๐ธ =2,421Kca-GrQc |๐‘‰|=5K ๐ธ =29K

Page 19: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Summary & future work

19

ClassicalConstant probability

ๅ›ณ

Monotone & submodular

[Kempe+'03]

Influence maximization

๐’ช ๐‘˜ ๐‘‰ + ๐ธlog ๐‘‰

๐œ–2time

1 โˆ’ eโˆ’1 โˆ’ ๐œ– -approx.[Tang+'15]

Our studyTime-decay probability

ๅ›ณ

Monotone & submodular

Influence maximization

๐’ช ๐‘˜ ๐ธ + ๐ธ 2

๐‘‰

log2 |๐‘‰|

๐œ–2time

1 โˆ’ eโˆ’1 โˆ’ ๐œ– -approx.

More generalTime-varying probability

ๅ›ณ

Simple extension violates

submodularity

Efficient influence max.?

๐‘ก

๐‘๐‘ข๐‘ฃ ๐‘ก

๐‘ก

๐‘๐‘ข๐‘ฃ ๐‘ก

๐‘ก

๐‘๐‘ข๐‘ฃ ๐‘ก

generalize generalize


Recommended