57
UNIVERSITAS NEGERI JAKARTA Pertemuan 14 FISIKA ZAT PADAT INTERAKSI ELEKTRON Iwan Sugihartono, M.Si Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam

12-14 d-effect_of_electron_-_electron_interaction

Embed Size (px)

Citation preview

Page 1: 12-14 d-effect_of_electron_-_electron_interaction

UNIVERSITASNEGERI JAKARTA

Pertemuan 14

FISIKA ZAT PADATINTERAKSI ELEKTRON

Iwan Sugihartono, M.SiJurusan FisikaFakultas Matematika dan Ilmu Pengetahuan Alam

Page 2: 12-14 d-effect_of_electron_-_electron_interaction

OUTLINE Interaksi Elektron

• Inelastic• Elastic

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | • 2

Page 3: 12-14 d-effect_of_electron_-_electron_interaction

Electron InteractionsInelastic collisions1. atomic electrons (ionization & excitation)2. nuclei (bremsstrahlung)

Elastic collisions1. w/ atomic electrons2. w/ nuclei

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •3

Page 4: 12-14 d-effect_of_electron_-_electron_interaction

Electron Interactions

Collisional (ionization and excitation)• Energy loss electron density (Z/A)

Radiation losses (bremsstrahlung)• Energy loss Energy & Z2

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •4

Page 5: 12-14 d-effect_of_electron_-_electron_interaction

Electron Interactions

• Mass Stopping Power (S/):

• Rate of energy loss (units: Mev-cm2/g)

• Collision losses (ionization and excitation) & radiation losses (bremsstrahlung):

ρdldΕ ρ

S

rct )ρS( )ρ

S( ) ρS(

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •5

Page 6: 12-14 d-effect_of_electron_-_electron_interaction

Electron Interactions

• Restricted Mass Stopping Power (L/:

• AKA LET (linear energy transfer) or energy loss per unit path length (for local absorption not radiated away)

ρdldE

ρL

Δ

E

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •6

Page 7: 12-14 d-effect_of_electron_-_electron_interaction

Electron interactionsAbsorbed dose Fluence

Dose

dE (E) ρL (E)

E D 0

Δ

dEEd

E

)(

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •7

Page 8: 12-14 d-effect_of_electron_-_electron_interaction

Electron beam characteristics• Rapid rise to 100%• Region of uniform dose (proximal 90% to distal

90%)

• Rapid dose fall-off

• High surface dose

• Clinically useful range 5-6 cm depth

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •8

Page 9: 12-14 d-effect_of_electron_-_electron_interaction

Electron Energy Specification

(the average energy of the spectrum)

(most probable energy @ surface)

(average energy at depth z)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •9

Page 10: 12-14 d-effect_of_electron_-_electron_interaction

Electron Energy Specification

Energy specification:• R50 - depth of the

50% dose• Rp - maximum

range of electrons

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •10

Page 11: 12-14 d-effect_of_electron_-_electron_interaction

Electron Energy Specification

500 332 ) R. (Ε

– Average Energy (E0):

– Most Probable Energy (Ep0):

– Energy (Ez) at depth z

2002509812200, pp R.R.. E p

MDACC 21EX

AAPM TG-25 Med Phys 18(1), 73-109 (1991)

)Rz- (E E

pz 10

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •11

Page 12: 12-14 d-effect_of_electron_-_electron_interaction

Determination of Absorbed Dose Calibration in water with ion chambers

• ADCL-calibrated system• Cylindrical-chamber reference point located

upstream of the chamber center by 0.5 rcav

• Reference conditions 100 cm SSD for a 1010 cm2 field

• Formalism:

N CowD

60

,kM D QQw

1.06.0 50 Rd ref

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •12

Page 13: 12-14 d-effect_of_electron_-_electron_interaction

Depth-Dose DistributionDose is calculated from ionization measurements:

• M is ionization• is the ratio of water-to-air mean restricted

stopping powers• is the ratio of water-to-air fluence

• Prepl is a chamber replacement correction

100

}{

}{

%max

numerator

PρLM

Drepl

W

air

W

airW

W

airρL

W

air

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •13

Page 14: 12-14 d-effect_of_electron_-_electron_interaction

Characteristics of clinical electron beams

X-Ray Contamination

SurfaceDose

Depth of 80% Dose

Depth of 50 % dose

Depth of 90% Dose

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •14

Page 15: 12-14 d-effect_of_electron_-_electron_interaction

Characteristics of Clinical Electron Beams Surface Dose:

• Surface dose increases with increasing electron energy

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •15

Page 16: 12-14 d-effect_of_electron_-_electron_interaction

Characteristics of Clinical Electron Beams Depth of the 80% Dose:

• Equal to approximately Enom/2.8 :

• Depth of 90% is approximately Enom/3.2 MDACC 21EX

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •16

Page 17: 12-14 d-effect_of_electron_-_electron_interaction

Characteristics of clinical electron beams Practical Range:

• Equal to approximately 1/2 nominal energy

• Energy loss is about 2 MeV / cm

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •17

Page 18: 12-14 d-effect_of_electron_-_electron_interaction

Characteristics of clinical electron beams

• X-Ray Contamination:– Increases with energy:– Varies with accelerator design – Defined as RP+2 cm

MDACC 21EX

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •18

Page 19: 12-14 d-effect_of_electron_-_electron_interaction

Characteristics of clinical electron beams

• Accelerator design variations– Penumbra– X-ray

Contamination

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •19

Page 20: 12-14 d-effect_of_electron_-_electron_interaction

Characteristics of clinical electron beams

Penumbral Effects:

• Low energies show expansion of isodose values

• High energies show constriction of high isodose values with bowing of low values.

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •20

Page 21: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryIsodoses (6 MeV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •21

Page 22: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryIsodoses (20 MeV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •22

Page 23: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryPDD- effect of field size (6 MeV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •23

Page 24: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryPDD- effect of field size (20 MeV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •24

Page 25: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryBeam abutment

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •25

Page 26: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryBeam abutment- electrons (6 & 20 MeV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •26

Page 27: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryBeam abutment- electrons (6 & 12 MeV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •27

Page 28: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryBeam abutment- electrons

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •28

Page 29: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryBeam abutment- photon & electron (6 MeV & 6 MV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •29

Page 30: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryBeam abutment- photon & electron (6 MeV & 18 MV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •30

Page 31: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryBeam abutment- photon & electron (IMC & tangents)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •31

Page 32: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam Dosimetry

Obliquity Effects• Oblique incidence results in

pdd shifts

From: Khan

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •32

Page 33: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam DosimetryObliquity effects

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •33

Page 34: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam Dosimetry

• Field Shaping:– Lead and/or Cerrobend is normally used– Thickness should be sufficient to stop electrons:

12E 0 t

t = mm PbE0 = Nom E (MeV)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •34

Page 35: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam Dosimetry

• Contour Irregularities:– Sharp contour

irregularities result in hot and cold spots

• Bolus:– Place as close to skin

as possible– Use tissue-equivalent

material– Bevel bolus to

smooth sharp edges

From: Khan

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •35

Page 36: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam Dosimetry

Effects of inhomogeneities:• CET - coefficient of equivalent thickness• The CET of a material is approximately equal to its

electron density relative to water CET)- (1 z- d deff

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •36

Page 37: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam Dosimetry

CET:• Sample calculation

CET)- (1 z- d deff

1 cmcm 2.25 0.25)- (1 1- 3 deff

cm 3.65 1.65)- (1 1- 3 deff

For Lung:

For Bone:

3 cm

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •37

Page 38: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam Dosimetry

Internal Shielding:• Used to protect

tissues beyond treatment volume

• Backscattered electrons produce “dose enhancement”

A dose enhancement of about 50% could be expected in a 6-MeV electron beam

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •38

Page 39: 12-14 d-effect_of_electron_-_electron_interaction

Electron Beam Dosimetry

• Internal Shielding:– Reduce the

intensity of backscatter by introducing a tissue-equivalent absorber upstream from the shield

Electron energy at the scatterer

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •39

Page 40: 12-14 d-effect_of_electron_-_electron_interaction

Electron BeamMonitor-Unit Calculations

%DDD Rxdmax

• Electron-beam monitor units (MU) are normally calculated to a point at dmax along the central axis

• A dose DRx that is prescribed to a point other than dmax, can be related to the dmax dose Ddmax through the precription isodose level %D:

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •40

Page 41: 12-14 d-effect_of_electron_-_electron_interaction

Electron BeamMonitor-Unit Calculations

SSDFS,

dmaxO

DMU

• The MU setting (MU) that is necessary to deliver a dose Ddmax is a function of the electron beam’s “output” (in cGy per MU) at the calculation point:

• Here OFS,SSD is the dose output as a function of field size (FS) and distance (SSD)

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •41

Page 42: 12-14 d-effect_of_electron_-_electron_interaction

Electron BeamMonitor-Unit Calculations For an electron beam calibrated such that 1 MU

= 1 cGy at 100 cm SSD for a 1010 field at dmax:

Calibrated output for a 10X10 cm field at 100

cm SSD

Output factor for field size FS relative to field

size 10X10

Distance-correction factor for distance SSD relative

to 100 cm SSD

Electron-beam output for a field size FS at a distance SSD

)(F)(OF)(OO SSDFS10,100SSDFS,

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •42

Page 43: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

Field-Size Corrections OFFS:• Field-size corrections generally account for the

aperture produced by two devices:• Cones or Applicators, and Customized Inserts

• The field-size dependent output factor OFFS can then be thought to consist of cone and insert output factors, OFCS and OFIS:

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •43

Page 44: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

ISCSISCSFS OFOFOFOF ,

• Field-Size Corrections - OFCS, IS :– When used separately, cone factors, OFCS, are normalized to

the 1010 (or 1515) cone, and insert factors, OFIS, are normalized to the open cone into which inserts are placed

– Alternatively, they can be combined into a single factor, OFCS, IS , that is normalized to the open 1010 (or to the 1515) cone :

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •44

Page 45: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

WxWLxLLxW OFOFOF

• Field-Size Corrections - OFLW :– For rectangular fields, the field-size dependent output factor, OFFS, is determined

from square-field output factors using the “square root method”. Thus, for a rectangular field LW:

– For example, the 412 output factor OF412 is the square-root of the product of the 44 output factor, OF44, and the 1212 output factor, OF1212

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •45

Page 46: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations Distance (SSD) Corrections FSSD:

• The variation of electron-beam output with distance does not follow a simple conventional inverse-square relationship

• Due to attenuation and scattering in air and in beam collimation and shaping devices

• Distance corrections take two forms:• Use of an “effective SSD” that can be used in an inverse-

square fashion• Use of an “air-gap factor” that can be used in addition to a

conventional inverse-square factor

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •46

Page 47: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

2

gdSSDdSSDISFF

m

meffSSDSSD

eff

EFF

Distance Corrections - SSDeff:• Assuming that an inverse-square relationship exists in which a reduced distance

to a “virtual” source of electrons exists, then the distance correction, FSSD is:

• where SSDeff is the effective (or virtual) SSD and g is the distance (gap) between the

“nominal” SSD (100 cm) and the actual SSD; dm is the dmax depth

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •47

Page 48: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

• Distance Corrections - SSDeff :– The “effective SSD” is a virtual distance that is utilized

so that an inverse-square approximation can be used• Effective SSDs vary with energy and field size as well as

with electron collimation design

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •48

Page 49: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

airmnom

mnomgSSDSSD f

gdSSDdSSDISFF nom

2

• Distance Corrections - fair :– An alternative method of applying distance

corrections utilizes a conventional inverse-square correction and an air gap factor, fair , that accounts for the further reduction in output that is unaccounted-for by the inverse-square correction alone:

• SSDnom is the nominal (100 cm) SSD

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •49

Page 50: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

WxWLxLLxW airairair fff

• Distance Corrections - fair:– fair also varies with energy and field size (it is derived from

the same data set that can be used to also determine SSDeff)

– For rectangular fields, as with any electron field-size correction, the square-root method is used:

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •50

Page 51: 12-14 d-effect_of_electron_-_electron_interaction

Monitor-Unit Calculations

2, bdSSDdSSDOO

mSSDbSSD m

• Use of Bolus:– When bolus is used, the depth-dose curve shifts

“upstream” by a distance equal to the bolus thickness (e.g. if 1 cm bolus is used, the depth of dmax shifts by a distance of 1 cm toward the skin surface)

– The output at this shorter distance is:

• where b is the bolus thickness in cm, and SSD is the nominal SSD

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •51

Page 52: 12-14 d-effect_of_electron_-_electron_interaction

Electron Monitor-Unit Calculations - Sample Problems

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •52

Page 53: 12-14 d-effect_of_electron_-_electron_interaction

Electron Monitor-Unit Calculations - Sample Problems

3 . R o u g h l y , w h a t i s t h e e n e r g y o f a 1 2 M e V e l e c t r o nb e a m a t a d e p t h o f 5 c m ?

MeVEEE lostinit ialleft 21012

MeVdcmMevE cmlost 1052/2

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •53

Page 54: 12-14 d-effect_of_electron_-_electron_interaction

Electron Monitor-Unit Calculations - Sample Problems

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •54

Page 55: 12-14 d-effect_of_electron_-_electron_interaction

Electron Monitor-Unit Calculations - Sample Problems

5 . W h a t i s t h e m o n i t o r - u n i t s e t t i n g n e c e s s a r y t o d e l i v e ra d o s e o f 2 0 0 c G y p e r f r a c t i o n t o d m a x u s i n g 9 M e Ve l e c t r o n s , 6 x 1 0 f i e l d i n a 1 0 x 1 0 c o n e , a t 1 0 0 c m S S D ?

WxWLxLLxW OFOFOF 002.10.1003.1101066106 xxx OFOFOF

2006.199200

1.0(1.002)(1.0)UM

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •55

Page 56: 12-14 d-effect_of_electron_-_electron_interaction

Electron MU Sample Problems

6 . W h a t i s t h e m o n i t o r - u n i t s e t t i n g n e c e s s a r y t o d e l i v e r ad o s e o f 2 0 0 c G y p e r f r a c t i o n t o t h e 9 0 % i s o d o s e u s i n g 9M e V e l e c t r o n s , 6 x 1 0 f i e l d i n a 1 5 x 1 5 c o n e , a t 1 0 5 c m S S D ?

airmnom

mnomgSSDSSD f

gdSSDdSSDISFF nom

2

892.0981.0909.0984.0978.053.2100

3.2100 2

SSDF

0.1003.1997.010106615

106 xxCone

x OFOFOF

2491.249

892.02.222

892.00.10.110090

200

MU

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •56

Page 57: 12-14 d-effect_of_electron_-_electron_interaction

THANK YOU

•03/05/23 •© 2010 Universitas Negeri Jakarta | www.unj.ac.id | •57