41
Actividades reveladoras del pensamiento: Una alternativa para desarrollar competencias matemáticas en alumnos del nivel medio superior para un curso de Matemáticas Tesista: Lic. Fernando Hernández Reyes Profesor titular: Dra. Ángeles Domínguez Cuenca Profesor tutor: Mtra. Adriana del Carmen Cantú Quintanilla Escuela de Graduados en Educación del Tecnológico de Monterrey 18 de Noviembre de 2011 1

Actividades reveladoras del pensamiento(Fotografías)

Embed Size (px)

Citation preview

1

Actividades reveladoras del pensamiento:Una alternativa para desarrollar competencias

matemáticas en alumnos del nivel mediosuperior para un curso de Matemáticas

Tesista: Lic. Fernando Hernández Reyes

Profesor titular: Dra. Ángeles Domínguez Cuenca

Profesor tutor: Mtra. Adriana del Carmen Cantú Quintanilla

Escuela de Graduados en Educación del Tecnológico de Monterrey

18 de Noviembre de 2011

Introducción

Hoy en día, la RIEMS ha traído consigo diversos retos para las instituciones educativas debido a su propuesta de una educación por competencias.

Introducción

En el sector curricular de Matemáticas, ha exigido a los docentes innovar en la manera en que organizan y dirigen sus cursos para crear verdaderas experiencias de aprendizaje significativo.

Introducción

En el estudio realizado, se pudo comprobar que las actividades reveladoras del pensamiento o Model-Eliciting Activities (MEA) resultan ser una alternativa que permiten desarrollar competencias matemáticas en alumnos de este nivel educativo y apoyar la evaluación formativa.

Antecedentes

¿Qué se sabe de las Model-Eliciting Activities (MEA)?

1. Que son actividades de modelación matemática en la que los alumnos, reunidos en equipos de trabajo, construyen y aplican un modelo para resolver situaciones reales (Lesh, Hoover, Hole, Kelly y Post, 2000).

Antecedentes

¿Qué se sabe de las Model-Eliciting Activities (MEA)?

2. Que se han establecido seis principios para diseñarlas:• Principio de construcción de modelos.• Principio de realidad.• Principio de documentación.• Principio de autoevaluación.• Principio de reutilización y transmisión.• Principio del prototipo eficaz.

Antecedentes

¿Qué se sabe de las Model-Eliciting Activities (MEA)?

3. Que han sido utilizadas en diversos cursos de nivel superior como:a) Diefes-Dux y Verleger (2009) para reflexionar acerca de la capacidad

de los estudiantes de ingeniería para cumplir con los últimos dos principios.

b) Diefes y Salim (2009) para identificar la manera en cómo aprenden los estudiantes de ingeniería a través de las MEA.

c) Domínguez (2009) para presentar las ventajas de emplear MEA dentro de la evaluación formativa en un curso de ingeniería.

d) Aliprantis y Carmona (2003) para analizar el pensamiento que revelan los estudiantes de nivel educativo básico.

Objetivos

Objetivo general: Desde la Teoría de los Modelos Mentales de Johnson-Laird (1983), identificar los modelos mentales y las competencias que desarrolla el alumno del nivel medio superior cuando construye modelos matemáticos en las MEA.

Objetivos

Objetivos particulares: Identificar y describir los modelos mentales que emplean los estudiantes

para modelar matemáticamente una situación problemática. Reflexionar acerca del uso de actividades de modelación como

actividades de aprendizaje y de desarrollo de competencias, con el fin de establecer su utilidad dentro de un curso de matemáticas de bachillerato.

Determinar el grado de viabilidad de la innovación que representa el uso de MEA en el nivel medio superior.

Validar los aspectos surgidos del trabajo con las MEA, susceptibles a ser utilizadas en otros cursos o instituciones.

Pregunta de investigación

El estudio pretendió responder a la pregunta:

¿Cuáles son los modelos mentales, los conocimientos y las competencias que manifiesta un alumno que participa en MEA dentro de un curso de matemáticas en el nivel medio superior y cómo los revela?

Limitaciones del estudio

El estudio estuvo limitado a: Los alumnos de cuarto semestre de la institución de estudio. Tres grupos de dicha generación que cumplieran con los criterios de

inclusión y de exclusión descritos en la metodología. Ser realizado durante el calendario 2011A, de los meses de febrero a

abril. Ser implementado al final de los módulos temáticos de modelación

lineal y cuadrática, del curso de matemáticas. Las limitaciones espaciales de la institución.

Metodología

Tipo de estudio: Enfoque mixto, predominantemente cualitativo. Diseño de investigación-acción educativa (Elliott, 2000)

Participantes: El profesor que implementó las MEA. Los alumnos de los tres grupos seleccionados.

Fuentes de recolección de datos: Resultados de los instrumentos de selección de grupos de trabajo. Evidencias del trabajo de los alumnos. Notas de campo. Focus group. Instrumento de autoevaluación y coevaluación.

Recolección de datos

Para esta etapa, se aplicó un diseño de muestreo probabilístico por racimos: Primera fase. Selección de los grupos de trabajo. Participantes:

383 alumnos de los 12 grupos de cuarto semestre. Instrumentos utilizados:

Examen de conocimientos de medio término del curso: Elaborado por el profesor de acuerdo con los temas del mismo. 41 % de confiabilidad con el método K-R20 (Kuder y Richardson,1937).

Test psicométrico Dominó o D48: Elaborado por Edgar Anstey en 1944. 85% a 91% de confiabilidad con el método factorial (Costa, 1996).

Con los resultados se eligieron tres grupos: uno de puntaje mayor, otro de puntaje menor y otro de puntaje promedio.

Recolección de datos

Después de seleccionar a los tres grupos de trabajo: Segunda fase. Implementación de las MEA. Participantes:

104 alumnos de los 3 grupos seleccionados. Instrumentos utilizados:

Evidencias del trabajo de cada uno de los 26 equipos que se conformaron en total: 8 equipos del grupo con menor puntaje. 9 equipos en los grupos con mayor puntaje y puntaje promedio.

Notas de campo: Elaboradas por el profesor aplicador.

Instrumento de autoevaluación y coevaluación.

Recolección de datos

Después de finalizar la implementación, se eligieron dos equipos para: Tercera fase. Focus group. Participantes:

24 alumnos de los 3 grupos seleccionados. Instrumentos utilizados:

Lista de preguntas de profundidad para cada grupo: 2 equipos de cada uno seleccionados bajo un muestreo

teórico intencionado

Análisis de datos

Para analizar los datos se aplicaron las siguientes técnicas: Para los resultados de la primera fase:

Obtención de estadísticos descriptivos de cada instrumento. Análisis hermenéutico apoyado con diagramas de caja y bigote.

Para los datos obtenidos en la segunda fase y la tercera fase: Análisis hermenéutico de las evidencias de trabajo a través de la

obtención de patrones y categorías de estudio (Mayan, 2001). Triangulación de datos para las notas de campo y los focus

group. Triangulación del investigador haciendo equipo con un profesor

del área de matemáticas y uno del área de psicología.

Resultados

De la primera fase, en el primer instrumento: 10 de los 12 grupos tuvieron en promedio entre 7 y 8 aciertos por

lo que su nivel de conocimientos es muy similar.

Resultados

De la primera fase, en el primer instrumento: El tercer cuartil se situó entre los 8 y 9 aciertos, por lo que el 75%

obtuvo menos de 10 aciertos. Si se hablara en términos de calificaciones el 75% tendría calificaciones menores a 70.

Resultados

De la primera fase, en el primer instrumento: Por otra parte, se observa que el rango intercuartílico tiene sus

cotas entre los 6 y los 9 aciertos, por lo que el 50% de los alumnos tendría entre 40 y 65 de calificación.

Resultados

De la primera fase, en el segundo instrumento: Las medias aritméticas de 10 de los 12 grupos se encuentran entre

los 30 y los 34 aciertos. De acuerdo con la interpretación del test D48, estos promedios indican un nivel medio de CI.

Resultados

De la primera fase, en el segundo instrumento: El rango intercuartílico tiene cotas en 28 y 39 aciertos para 9 de los 12

grupos, lo cual indica que el 50% de los alumnos tiene un nivel medio o inferior al término medio de coeficiente intelectual.

Resultados

De la primera fase, en el segundo instrumento: El tercer cuartil de 11 de los 12 grupos es inferior a los 39 aciertos, lo

cual continúa representando un nivel medio. 0

Resultados

Por lo tanto, la principal deducción es que los alumnos de cuarto semestre tienen un nivel medio o inferior al término medio de coeficiente intelectual.

Esto abrió la reflexión respecto a la habilidad que podrían tener los alumnos para resolver las MEA.

Resultados

En la segunda fase, la primera MEA solicitaba obtener el costo por habitación que maximizara las ganancias de un hotel bajo la condición de que por cada dólar de aumento, perdería una de las 80 habitaciones que tenía.

Resultados

La línea estratégica que siguieron los equipos fue:

Resultados

A partir de esta línea, los modelos mentales fueron:

Modelo mental Código DescripciónGanancia Total con Aumento Constante

GT-AC Se obtiene la ganancia tras calcular los ingresos totales y restarle los gastos totales, y compara las ganancias con precios que tienen una diferencia constante entre ellos.

Ganancia Total con Aumento Aleatorio

GT-AA Se obtiene la ganancia tras calcular los ingresos totales y restarle los gastos totales, y compara las ganancias con precios que no tienen una diferencia constante entre sí.

Ganancia Total con Aumento Mixto

GT-AM Se obtiene la ganancia tras calcular los ingresos totales y restarle los gastos totales, y compara las ganancias con precios que tienen o no, una diferencia constante entre sí.

Ganancia por Habitación con Aumento Constante

GH-AC Se obtiene la ganancia total después de obtener la ganancia de cada habitación, y realiza una comparación entre precios con una diferencia constante entre ellos.

Ganancia por Habitación con Aumento Aleatorio

GH-AA Se obtiene la ganancia total después de obtener la ganancia de cada habitación, y realiza una comparación entre precios con una diferencia que no es constante.

Ganancia por Habitación con Aumento Mixto

GH-AM Se obtiene la ganancia total después de obtener la ganancia por habitación, y realiza una comparación entre precios que tienen o no, una diferencia constante entre sí.

Resultados

El 100% utilizó un modelo aritmético, el 70% lo complementó con uno tabular, el 12% intentó aplicar uno algebraico, el 9% utilizó un gráfico de barras y el 6% simbolizó sus datos pero sin expresión algebraica.

El 21% empleó un solo modelo matemático, el 60% empleó otro modelo para complementar el aritmético, el 15% utilizó tres modelos y solo un equipo intentó emplear los cuatro tipos.

El uso de modelos tabulares es menor para grupos con menor nivel de habilidad pero la cantidad de modelos matemáticos decrece conforme estos aumentan.

El uso de modelos algebraicos y de modelos gráficos resultó ser bastante raro en esta implementación.

En general, respecto a los modelos matemáticos utilizados:

Resultados

El 88% utilizó un modelo mental en el que obtenían la ganancia del hotel a través de la diferencia entre los ingresos y los gastos totales.

El 39% utilizó modelos mentales con un aumento constante en el precio, el 36% consideró un aumento aleatorio y el 25% empleó incrementos constantes y aleatorios.

El uso de modelos GT-AC se ve reducido en grupos con nivel de habilidad bajo, predominando los aumentos aleatorios al precio. Sin embargo, en el resto de los grupos, el uso de cierto tipo de modelo mental es relativamente el mismo.

El nivel de habilidad influye en el tipo de modelos mentales que los estudiantes emplean.

Solo el 42% llegó a la respuesta correcta y que el 39% se haya acercado con su respuesta de $70.

En general, respecto a los modelos mentales revelados:

Resultados

En la segunda MEA se solicitaba elegir el plan de telefonía celular que minimizara los gastos de una persona con una necesidad inicial de 180 minutos al mes, con la posibilidad de utilizar hasta 360 minutos según se requiriera.

Resultados

La línea estratégica que siguieron los equipos fue:

Resultados

A partir de esta línea, los modelos mentales fueron:

Modelo mental Código Descripción

Elección del Plan más Cercano a Una necesidad

EP-CU El alumno calcula los costos de aquellos planes cuya cantidad de minutos gratis sea cercana a la solicitada y tenga un costo menor para los minutos adicionales. Esto se realiza de manera similar para cada necesidad.

Elección del Plan con Minutos de sobra para una Necesidad

EP-MU El alumno calcula los costos de aquellos planes cuya cantidad de minutos gratis sea cercana a la solicitada y ofrezca al cliente mayor cantidad de minutos de la que pueda necesitar.

Elección del Plan más Cercano para Ambas necesidades

EP-CA El alumno calcula los costos de aquél plan de pago que incluya ambas necesidades y que tenga un costo menor para los minutos adicionales.

Elección del Plan con Minutos de sobra para Ambas necesidades

EP-MA El alumno calcula los costos de aquél plan de pago que incluya ambas necesidades y que ofrezca mayor cantidad de minutos de la que pueda necesitar.

Resultados

El 100% utilizó un modelo aritmético para presentar sus resultados, el 55% utilizó un modelo tabular, el 3% utilizó un modelo gráfico y el 6% empleó un modelo algebraico junto otros modelos.

El 45% empleó un solo modelo matemático, el 51% empleó otro modelo para complementar el aritmético, y solo un equipo intentó emplear cuatro modelos matemáticos.

Es interesante reconocer que el grupo con puntaje promedio aplicó modelos tabulares en un 78% y que el grupo con puntaje mayor intentó aplicar modelos tabulares aunque fuera de manera parcial en un 89%.

Existe bastante similitud entre los modelos empleados por cada grupo ya que la idea general fue comparar los costos.

El uso de modelos algebraicos y de modelos gráficos resultó ser prácticamente nulo. La razón estribó en que la comparación de gastos no requirió de una expresión algebraica sino de un proceso aritmético.

En general, respecto a los modelos matemáticos utilizados:

Resultados

Una serie de patrones para cada unidad de análisis.

De la tercera fase, de los focus group, de las notas de campo y del instrumento de autoevaluación y coevaluación, se obtuvo lo siguiente:

Unidad de análisis Patrones

Conocimientos

- La actividad fue un reto para nuestras habilidades y conocimientos.- Aplicamos las matemáticas para calcular ganancias y/o costos para planes de pago.- Queríamos aplicar lo que vimos en el tema pero ni supimos cómo.

MEA

- Nos dimos cuenta de nuestros errores y supimos como corregirlos.- Lo que más se nos dificultó fue redactar la carta y explicar los procedimiento por escrito.- Aplicamos las matemáticas en la vida real y lo que hicimos si puede ser útil en un futuro.

Competencias matemáticas

- Lo que más se nos dificultó fue redactar la carta y explicar nuestros resultados por escrito.- Hicimos comparaciones entre los resultados que íbamos obteniendo para elegir al mejor.- Al principio fue complicado comprender el problema.- Nos preocupamos cuando otros equipos llegaban a diferentes resultados que el nuestro.- Queríamos aplicar lo que vimos en el tema pero ni supimos cómo.- Para nuestros cálculos, usamos calculadora.- Quisimos hacer una gráfica o una fórmula pero no supimos cómo organizarla.- Es diferente explicar nuestros resultados a escribirlos.

Estrategia de aprendizaje

- No aplica. Esta unidad será analizada a través de otras fuentes.

Resultados De la tercera fase, de los focus group, de las notas de campo y del

instrumento de autoevaluación y coevaluación, se obtuvo lo siguiente: Una serie de patrones respecto al grado de cumplimiento de las

competencias descritas en el PISA.

Competencias Patrones

Pensar y razonar Competencia fomentada

Argumentar inferencias Dificultades para hacerlo por escrito, no así de forma oral.

Comunicar resultados Competencia fomentada

Modelar una situación Competencia satisfactoriamente desarrollada

Plantear y resolver problemas Dificultades para comprender el planteamiento en la parte inicial del proceso

Representar objetos matemáticos Competencia no cumplida satisfactoriamente

Usar lenguaje formal y operacional Competencia desarrollada de manera parcial

Usar tecnología Uso de la calculadora solo para fines operacionales

Resultados De la tercera fase, de los focus group, de las notas de campo y del

instrumento de autoevaluación y coevaluación, se obtuvo lo siguiente: Una serie de patrones respecto al cumplimiento de los seis

principios de las MEA (Lesh et al, 2000).

Principio Patrones

Principio de construcción de modelos Se cumplió

Principio de realidad Se cumplió

Principio de documentación Se cumplió

Principio de autoevaluación No se cumplió de manera satisfactoria

Principio de reutilización Se cumplió aunque mantuvieron algunas reservas

Principio de prototipo eficaz No se cumplió de manera satisfactoria

Conclusiones

Los estudiantes de educación media superior: Aplican modelos mentales que les permiten interpretar y resolver

aritméticamente un problema, así como para argumentar sus ideas.

Elaboran modelos matemáticos que son, inicialmente, aritméticos. Además, emplean modelos tabulares o cuasi-tabulares para complementar su estrategia aunque no con suficiente formalidad.

Tienen conocimientos que les permiten abordar problemas de modelación matemática con seguridad y confianza. No obstante, el poco uso o la falta de significado de ciertos conceptos provoca que sus modelos mentales se vean limitados (Johnson-Laird, 2010).

Desarrollan competencias relacionadas con altos niveles de desempeño en el PISA y en la ENLACE. En este aspecto, se verifica que continúan desarrollándolas paulatinamente.

Conclusiones

Respecto al desarrollo de competencias: Fomentan competencias matemáticas PISA en un nivel de

desempeño entre el 4 y el 5 ya que, aunque no desarrollen modelos muy complejos ni evalúen adecuadamente sus estrategias, pueden trabajar estratégicamente con un buen razonamiento e intuir aspectos derivados de sus respuestas.

Se corrobora que su capacidad de redacción aún está limitada pero se sigue desarrollando, por lo que las MEA fueron una excelente oportunidad de fomentar competencias comunicativas.

El trabajo colaborativo y cooperativo se convirtió en una actividad de discusión y respeto por los puntos de vista del otro.

Conclusiones

Respecto a las hipótesis del estudio: Se comprobó que los alumnos emplean modelos aritméticos como

primera estrategia para resolver un problema, a pesar de conocer conceptos y herramientas algebraicas.

Se comprobó que los conocimientos previos de los alumnos influyen en la elaboración de los modelos mentales y matemáticos revelados a través de las MEA.

Se concluyó que las MEA revelan el pensamiento crítico del alumno, al considerar las capacidades descritas por Campos (2007): clarificar, enjuiciar y evaluar información.

Se comprobó que las MEA motivan al alumno a aplicar sus conocimientos y le brindan aprendizajes significativos.

Perspectivas

¿Influye la autoconfianza del alumno en las MEA o, en todo caso, su nivel de habilidad para sacar el mejor provecho de ellas?

Si se implementan las mismas MEA en diferentes momentos del curso. ¿Desarrollarán los mismos modelos sin el trabajo previo en el tema como ocurrió en esta investigación? ¿Habrá alguna diferencia o alguna relación entre aplicarlas al inicio o al final de un curso?

Dados los modelos matemáticos revelados, surge la inquietud de implementar MEA en todos los niveles del bachillerato. ¿En qué momento de la trayectoria académica se elaboran modelos matemáticos más complejos?

ReferenciasAliprantis, C. D. y Carmona, G. (2003). Introduction to an Economic Problem: A models and modeling perspective. En

Lesh, R. y Doerr, H. (Eds.), Beyond constructivism: models and modeling perspectives on mathematics problem solving, learning, and teaching [Versión electrónica]. (pp. 255-264). Mahwah, NJ: Lawrence Erlbaum.

Campos, A. (2007). Pensamiento crítico. Técnicas para su desarrollo. Bogotá, Colombia: Magisterio.Costa, K. M. (1996). Manual de pruebas de inteligencia y aptitudes. Distrito Federal, México: Plaza y Valdés.Elliott, J. (2000). El cambio educativo desde la investigación-acción (Manzano, P., Trad.) (3a. ed.). Madrid, España:

Morata. (Trabajo original publicado en 1991).Diefes-Dux, H. A. y Verleger, M. A. (2009, Octubre). Student Reflections on Peer Reviewing Solutions to Model-Eliciting

Activities. Ponencia presentada en la 39th ASEE/IEEE Frontiers in Education Conference, Santo Antonio, Texas.Diefes-Dux, H. A. y Salim, A. (2009, Julio). Problem formulation during Model-Eliciting Activities: Characterization of first-

year student’s responses. Ponencia presentada en el Research in Engineering Education Symposium, Palm Cove, Queensland.

Domínguez, A. (2009, Septiembre). Actividades reveladoras del pensamiento: más que una forma de aprendizaje activo . Ponencia presentada en el 10º Congreso Nacional de Investigación Educativa, Veracruz, México.

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness [Versión electrónica]. Cambridge, Massachusetts: Harvard University Press.

Johnson-Laird, P. N. (2010). Mental models and human reasoning. PNAS, CVII (43). 18243-18250. Recuperado el 23 de febrero de 2011 en http://www.pnas.org/content/107/43/18243.full.pdf+html

Kuder, G. F. y Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika, II (3). 151-160. doi: 10.1007/BF02288391

Lesh, R., Hoover, M., Hole, B., Kelly, A. & Post, T. (2000). Principles for developing thought- revealing activities for students and teachers. En A. Kelly, R. Lesh (Eds.), Research Design in Mathematics and Science Education. 591-646. Recuperado el 2 de febrero de 2011 en http://www.cehd.umn.edu/rationalnumberproject/00_2.html

Mayan, M. J. (2001). Una introducción a los métodos cualitativos: Módulo de entrenamiento para estudiantes y profesores. Alberta, Canadá: International Institute for Qualitative Methodology.

¡Muchas gracias!

“Calificamos de complejas aquellas cosas que no entendemos; eso significa que todavía no hemos encontrado la manera

correcta de pensar en ellas”Tsutomu Shimomura