96

Click here to load reader

Atmósfera y climatología

Embed Size (px)

Citation preview

Page 1: Atmósfera y climatología

Sistemas fluidos externos

La atmósfera

Page 2: Atmósfera y climatología

UNIDAD 8: Sistemas fluidos externos

Eduardo Gómez

Capas fluidas

AtmósferaHidrosfera Forman un sistema unido por el ciclo del agua

Estos dos sistemas juntos forman la máquina climática del planeta

Page 3: Atmósfera y climatología

Eduardo Gómez

Capas fluidas

El ciclo hidrológico o del agua es un proceso continuo, sin apenas pérdidas. Supone un sistema de limpieza del planeta.Es la interacción más importante dentro de la máquina climática.

¿Cómo funciona?

UNIDAD 8: Sistemas fluidos externos

Page 4: Atmósfera y climatología

Eduardo Gómez

Es un sistema complejo que se estudia mediante modelos.Se basa en los movimientos generados por la existencia de un gradiente entre dos puntos:

• Gradiente de Temperatura• Gradiente de Humedad• Gradiente de Presión

Contraste térmico

Transporte oceánico y

atmosférico

El bucle negativo originado proporciona estabilidad al planeta: SISTEMA HOMEOSTÁTICO.

DINÁMICA DE LAS MASAS FLUIDAS

UNIDAD 8: Sistemas fluidos externos

Page 5: Atmósfera y climatología

Eduardo Gómez

El agua (hidrosfera) y el aire (atmósfera) tienen comportamientos diferentes debido a sus diferencias de:

• Densidad• Compresibilidad• Movilidad• Capacidad de almacenamiento de calor• Conducción del calor

Estas diferencias se reflejan en los movimientos que realizan tanto el agua como el aire. Los movimientos pueden ser:

• Verticales • Horizontales

UNIDAD 8: Sistemas fluidos externos

Page 6: Atmósfera y climatología

Eduardo Gómez

Movimientos verticales

Dependen de la temperatura Gradiente térmicoIncremento de densidad

El sentido del movimiento depende de la capacidad para conducir el calor

Aire

El aire es un mal conductor térmicoSe calienta por el calor irradiado por la Tierra, no por radiación directa.El aire caliente (menos denso) sube y se va enfriandoEl aire frío (más denso) baja y se va calentando

En estas circunstancias, se favorecen los movimientos verticales de las masas de aire.

Tª baja

Tª alta

UNIDAD 8: Sistemas fluidos externos

Page 7: Atmósfera y climatología

Eduardo Gómez

Movimientos verticales

Agua

En el caso del agua:

Es buena conductora del calorLa superficie se calienta por radiación (menos densidad) y permanece fría en el fondo (más densa)

En estas circunstancias, se impiden los movimientos verticales.

Tª baja

Tª alta

Sólo habrá movimientos verticales en aquellas zonas en las que el clima provoque que el agua superficial esté muy fría (mayor densidad) y por lo tanto descienda.

UNIDAD 8: Sistemas fluidos externos

Page 8: Atmósfera y climatología

Eduardo Gómez

Movimientos horizontales

Están provocados por el gradiente térmico generado por las diferencias de insolación en la superficie terrestre. Este movimiento amortigua las diferencias térmicas entre las distintas zonas de la Tierra.

Masas frías Masas frías

UNIDAD 8: Sistemas fluidos externos

Page 9: Atmósfera y climatología

Eduardo Gómez

Zonas con fuerte insolación

Zonas con baja insolación

Zonas con baja insolación

UNIDAD 8: Sistemas fluidos externos

Page 10: Atmósfera y climatología

Las corrientes marinas son movimientos horizontales del agua que implican el desplazamiento de enormes masas de líquido, son como especies de ríos que circulan por el mar.

La causa del movimiento es la diferencia de temperatura en la superficie del agua debido a la inclinación de los rayos solares. Cerca de los polos la temperatura está entre 1º C y 2º C y en las zonas ecuatoriales alcanza una temperatura de 30º C.El movimiento de rotación de la Tierra hace que las corrientes del Hemisferio Norte se desvíen hacia la derecha y las del Hemisferio sur, hacia la izquierda.

Movimientos horizontales del agua

Eduardo Gómez

UNIDAD 8: Sistemas fluidos externos

Page 11: Atmósfera y climatología

Eduardo Gómez

LA ATMÓSFERA

Conjunto de gases que rodea la Tierra en contacto con la superficie terrestre por la atracción gravitacional.

La energía que recibe del Sol la redistribuye mediante los vientos, permitiendo de esta forma, junto a sus características de composición, temperatura y protección frente a los rayos solares, la existencia de vida sobre la Tierra.

UNIDAD 8: Sistemas fluidos externos

Page 12: Atmósfera y climatología

Eduardo Gómez

COMPOSICIÓN DEL AIRE SECO

Gas Abundancia (% Vol.)

Nitrógeno (N2) 78,08

Oxígeno (O2) 20,95

Argón (Ar) 0,93

Dióxido de carbono (CO2) 0,04 (unas 400 ppm)

Otros gases nobles Menor que 0,001

Composición de la atmósfera

Ha variado mucho desde su formación y últimamente cambia rápidamente en ciertos componentes debido a la acción humana.

UNIDAD 8: Sistemas fluidos externos

Page 13: Atmósfera y climatología

Eduardo Gómez

Los componentes atmosféricos se pueden clasificar también en:1. Mayoritarios: (los reseñados en la tabla anterior)2. Minoritarios: (Hidrocarburos, NOx, Ozono, SO2)3. Variables: Vapor de agua, contaminantes, Polen, polvo.

Las proporciones de estos gases se mantienen casi constantes con la altura y esto se debe a la permanente mezcla vertical por agitación, que supera a la separación difusiva que es comparativamente lenta, de los gases componentes según sus pesos moleculares respectivos.

Las proporciones de los distintos gases, ya mencionados, constituyen lo que coloquialmente llamamos aire y se mantienen casi invariables hasta los 80 km. de altitud: homosfera. La atmósfera restante, de composición más variable, se llama heterosfera y queda separada de la anterior por una superficie de transición, llamada homopausa o mesopausa.

Composición

UNIDAD 8: Sistemas fluidos externos

Page 14: Atmósfera y climatología

Eduardo Gómez

El vapor de agua mezclado en cantidades variables con el aire seco constituye el denominado “aire húmedo”. Gracias a la turbulencia y a las corrientes verticales, el vapor de agua asciende a niveles donde se condensa, formando nubes y precipitaciones, regresando de esta manera el agua a la superficie terrestre.

El vapor de agua varía desde prácticamente un 0% (desiertos) a un 4% en las zonas más húmedas.

Debido a las propiedades del agua (calor de fusión y vaporización) es capaz de absorber o emitir enormes cantidades de energía.

También es responsable de la formación de nubes y de distintos fenómenos meteorológicos.

Elementos variables: El vapor de agua

UNIDAD 8: Sistemas fluidos externos

Page 15: Atmósfera y climatología

Eduardo Gómez

El CO2 mantiene más o menos constante su valor medio de concentración, pero oscila mucho entre el día y la noche (debido a la actividad fotosintética) y también depende de la localización (más alta cerca de zonas industriales, zonas volcánicas o muy pobladas).

Elementos variables: El CO2

Es responsable, junto con el vapor de agua, metano y otros gases, del incremento del efecto invernadero.

UNIDAD 8: Sistemas fluidos externos

Incremento de la cantidad atmosférica de dióxido de carbono, medido en el observatorio de Mauna Loa (Islas Hawaii), desde los años 60 hasta el 2000.En las últimas décadas, sin tener en cuenta las variaciones estacionales, el incremento anual de la concentración de CO2 en el aire ha sido por término medio de 1,5 ppm (partes por millón), es decir, un 0,5 % por año.

Page 16: Atmósfera y climatología

Eduardo Gómez

Estructura de la atmósfera

Se pueden distinguir varias capas según distintos criterios:

• Composición (poco utilizado)• Temperatura (el más utilizado)

Capas de la atmósfera según

la composición

Homosfera

Heterosfera

Exosfera

• De lo 0 a los 80 km• Gases mezclados de

forma homogéneaDe los 80 a los ¿1.000 km?Distribución de los gases según la densidad:a. Capa de N2

b. Capa de Oxígeno atómicoc. Capa de Heliod. Capa de Hidrógeno atómico

A partir de los ¿1000 km?Pocas moléculas de gas que escapan hacia el espacio

UNIDAD 8: Sistemas fluidos externos

Page 17: Atmósfera y climatología

Eduardo Gómez

Capas de la atmósfera según la temperaturaEstructura de la atmósfera

La atmósfera está dividida en cuatro capas:

Ionosfera

Mesosfera

Estratosfera

Troposfera

Altura (km)180

140

100

60

20

0

Temperatura del aire- 60 C 0 C + 100 C

Troposfera. De los 0 m a los 12 Km (de media) de altitud. Su espesor varía entre los polos (6-7 km) y el ecuador (17-18 km). Se producen los fenómenos meteorológicos más comunes (nubes, lluvia, etc.). En la tropopausa se alcanzan temperaturas de – 50 ºC.

Estratosfera. Llega hasta los 50 km de altitud (estratopausa). Su temperatura oscila entre –50 C y valores positivos en la zona próxima a la capa de ozono por absorber la radiación ultravioleta del Sol.

Mesosfera. Se extiende hasta los 80 km de altitud. Su temperatura disminuye de forma progresiva hasta –70 C en la mesopausa.

Ionosfera. Se extiende hasta los 500 km de altitud. Su temperatura aumenta de forma progresiva hasta 1.000 C.

UNIDAD 8: Sistemas fluidos externos

Page 18: Atmósfera y climatología

Eduardo Gómez

La troposfera

La temperatura va disminuyendo conforme se va subiendo, hasta llegar a -70 ºC en su límite superior.

En la troposfera se hace posible la vida, ya que se concentran la mayoría de los gases de la atmósfera proporcionando las condiciones necesarias para que pueda desarrollarse la vida. También tiene lugar el efecto invernadero. Es la zona más turbulenta de la atmósfera.

La troposfera es la primera capa de la atmósfera. Llega hasta un límite superior (tropopausa) situado a 7 km de altura en los polos y los 18 km en el ecuador.

En ella se producen importantes movimientos verticales y horizontales de las masas de aire (vientos) y hay relativa abundancia de agua. Es la zona de las nubes y otros fenómenos meteorológicos: lluvias, vientos, cambios de temperatura, y la capa de más interés para la ecología.

UNIDAD 8: Sistemas fluidos externos

Page 19: Atmósfera y climatología

Acumula la mayor parte de los contaminantes en la llamada “capa sucia” (primeros 500 metros) que se detecta por la coloración rojiza del cielo al amanecer y atardecer.

Dependiendo de la inclinación y de la longitud de onda de los rayos solares, la luz difunde hacia un color u otro.

La troposfera

Eduardo Gómez

UNIDAD 8: Sistemas fluidos externos

Page 20: Atmósfera y climatología

Eduardo Gómez

La estratosfera

Comprende la zona entre la tropopausa y la estratopausa (situada a 50-60 km de altitud)

La temperatura cambia su tendencia y va aumentando hasta llegar a ser de algunos grados positivos en la estratopausa.

Casi no hay movimiento en dirección vertical del aire, pero los vientos horizontales llegan a alcanzar frecuentemente los 200 km/h, lo que facilita el que cualquier sustancia que llega a la estratosfera se difunda por todo el globo con rapidez.

No hay nubes, salvo en la parte inferior (nubes de hielo).

UNIDAD 8: Sistemas fluidos externos

Page 21: Atmósfera y climatología

Eduardo Gómez

Formación del ozono

La capa de ozono

La capa de ozono se sitúa entre los 25-35 km en concentraciones de 12 ppm.

El espesor es variable: Mínimo en los polos y máximo en el ecuador

Los procesos de formación y destrucción (procesos naturales) del ozono están en equilibrio y retienen el 90% de los rayos U.V. y liberan calor (la temperatura sube en la estratosfera, desde los -70º C en la tropopausa hasta los 4ºC en la estratopausa).

UNIDAD 8: Sistemas fluidos externos

Page 22: Atmósfera y climatología

Eduardo Gómez

El movimiento horizontal y la velocidad de los vientos de la estratosfera influyen en la difusión de los CFC que destruyen el ozono. En esta parte de la atmósfera, entre los 30 y los 50 kilómetros, se encuentra el ozono (el 90% del ozono atmosférico, el 10% restante está en la troposfera y es un contaminante nocivo), importante porque absorbe dañinas radiaciones ultravioleta.

La capa de ozono

También hay un importante proceso de destrucción del ozono (el llamado “agujero” de ozono) debido a causas humanas, fundamentalmente la emisión de CFC (clorofluorocarbonos) a la atmósfera.

UNIDAD 8: Sistemas fluidos externos

Page 23: Atmósfera y climatología

Eduardo Gómez

La mesosferaSe extiende desde la estratopausa (4ºC ) hasta la mesopausa (a unos 80 km de altitud y entre -80ºC y -90ºC)

• Contiene sólo cerca del 0,1% de la masa total del aire. • Es importante por la ionización y las reacciones

químicas que ocurren en ella. • A los 70 km de altura abundan los vapores de sodio

(sodiosfera) que pueden ocasionar efectos luminosos muy curiosos, llamados nubes noctilucientes.

• La disminución de la temperatura combinada con la baja densidad del aire en la mesosfera determinan la formación de turbulencias.

• Las estrellas fugaces se originan por el roce de meteoritos con las partículas de esta capa.

UNIDAD 8: Sistemas fluidos externos

Page 24: Atmósfera y climatología

Eduardo Gómez

La termosfera o ionosferaSe extiende desde la mesopausa hasta la termopausa (600 km y 1000ºC)

Por efecto de las radiaciones de onda corta (rayos gamma y rayos X) se ionizan moléculas de nitrógeno y oxígeno y se liberan electrones.

UNIDAD 8: Sistemas fluidos externos

Page 25: Atmósfera y climatología

Eduardo Gómez

La termosfera o ionosfera

IONOSFERA

CARGAS POSITIVAS

CARGAS NEGATIVAS

La Tierra es un condensador donde la superficie terrestre es una de las placas, cargada negativamente, y la ionosfera es la otra placa, cargada positivamente. Estas dos placas se comportan como conductores perfectos.

La capa de aire que existe entre las dos “placas” actúa como un dieléctrico (se pierde carga).

La Tierra se va descargando por el flujo de cargas, pero se recarga gracias a las tormentas.

En la ionosfera rebotan las ondas de radio (onda larga), lo que posibilita las comunicaciones

El aumento de temperatura en esta capa se debe a la absorción de la radiación solar de onda más corta.

UNIDAD 8: Sistemas fluidos externos

Page 26: Atmósfera y climatología

Eduardo Gómez

La termosfera o ionosfera

En esta capa se pueden observar las auroras polares.

Una aurora polar (boreal o austral) se produce cuando una eyección de masa solar choca con los polos norte o sur de la magnetosfera terrestre, produciendo una luz difusa pero predominantemente proyectada en la ionosfera terrestre.

UNIDAD 8: Sistemas fluidos externos

Page 27: Atmósfera y climatología

Eduardo Gómez

La Exosfera Su límite inferior se localiza a una altitud entre 500 y 600 km, aproximadamente. Su límite con el espacio llega en promedio a los 10.000 km por lo que la exosfera está contenida en la magnetosfera (500-60.000 km), que representa el campo magnético de la Tierra.

En esa región, hay un alto contenido de polvo cósmico que cae sobre la Tierra y que hace aumentar su peso en unas 20.000 toneladas. Es la zona de tránsito entre la atmósfera terrestre y el espacio interplanetario y en ella se pueden encontrar satélites meteorológicos de órbita polar.

UNIDAD 8: Sistemas fluidos externos

Page 28: Atmósfera y climatología

Eduardo Gómez

Calentamiento de la atmósfera

De toda la radiación que emite el sol solo una parte llega a la superficie terrestre. La atmósfera permite el paso de parte de la radiación de onda corta, que calienta los materiales terrestres. Estos, posteriormente emiten este calor en forma de radiación infrarroja. La energía retenida en la tierra permite que la temperatura media de la tierra permanezca en torno a los 15ºC. A este fenómeno se de denomina efecto invernadero natural.

UNIDAD 8: Sistemas fluidos externosVer animación del balance energético

Page 29: Atmósfera y climatología

Eduardo Gómez

Calentamiento de la atmósfera

El efecto invernadero es un fenómeno natural en el que una parte de la energía solar emitida por la tierra es absorbida y retenida en forma de calor en la baja atmósfera. Los gases existentes en la atmósfera, principalmente el vapor de agua, son la causa del efecto invernadero . Otros gases, tales como el dióxido de carbono, el metano, los óxidos de nitrógeno, el ozono y los hidrocarburos, juegan también su papel en el efecto invernadero.

Los gases de efecto invernadero absorben la radiación infrarroja emitida por la superficie de la Tierra, por la propia atmósfera debido a la presencia tales gases, y por las nubes. La atmósfera emite radiaciones en todas la direcciones, incluso hacia la superficie de la Tierra. De esta forma los gases de efecto invernadero retienen el calor dentro del sistema troposfera-superficie.

UNIDAD 8: Sistemas fluidos externos

Page 30: Atmósfera y climatología

Calentamiento de la atmósfera

Page 31: Atmósfera y climatología

Eduardo Gómez

Dinámica atmosférica

Se debe al desigual calentamiento de la superficie (mayor en el ecuador y menor en los polos).Las diferencias de presión y temperatura provocan la aparición de vientos que transfieren el calor mediante movimientos convectivos verticales.

AIRE FRÍO

δ alta Tª baja

AIRE CALIENTE

δ bajaTª alta

Convección térmica

Estos movimientos pueden ser:

1. Convección térmica2. Convección por humedad3. Convección por presión

UNIDAD 8: Sistemas fluidos externos

Page 32: Atmósfera y climatología

Eduardo Gómez

Dinámica atmosférica

El aire húmedo es menos denso que el seco porque el agua (Pm=18) desplaza a otros componentes de mayor peso molecular: nitrógeno (28), oxígeno (32), dióxido de carbono (44), etc.

AIRE SECO

δ alta

AIRE HÚMEDO

δ baja

Convección por humedad

Convección por humedad

UNIDAD 8: Sistemas fluidos externos

Page 33: Atmósfera y climatología

Eduardo Gómez

La cantidad de vapor de agua en el aire se mide en:

• Humedad absoluta:

• Cantidad de vapor en un volumen determinado de aire (se mide en g/metro cúbico). Depende de la temperatura.

• Cuando el aire no puede contener más humedad se satura o condensa: Punto de rocío.

Dinámica atmosférica

Convección por humedad

• Humedad relativa: Es la relación porcentual entre la cantidad de vapor de agua real que contiene el aire y la que necesitaría contener para saturarse a idéntica temperatura, por ejemplo, una humedad relativa del 70% quiere decir que de la totalidad de vapor de agua (el 100%) que podría contener el aire a cierta temperatura, solo tiene el 70%.

UNIDAD 8: Sistemas fluidos externos

Page 34: Atmósfera y climatología

El higrómetro es el instrumento utilizado para medir la humedad del aire.

Cuando se calienta, el aire sube. A medida que asciende, va enfriándose y el vapor de agua se condensa en pequeñas gotas o cristales de hielo.

Las nubes o la niebla son masas de aire cargado de finas gotas de agua.

Dinámica atmosférica

Convección por humedad

UNIDAD 8: Sistemas fluidos externos

Page 35: Atmósfera y climatología

Eduardo Gómez

Convección por diferencias de presión

Dinámica atmosférica

La presión en un punto depende de la humedad y la temperatura y puede ir variando en un mismo punto geográfico. Los puntos que tienen la misma presión se unen mediante unas líneas denominadas ISOBARAS.

Anticiclones: Zonas de alta presión. El viento sale hacia afuera.

Expulsa nubes, precipitaciones (tiempo

estable)

Borrascas: Zonas de baja presión. El

viento entra desde el exterior. Trae nubes,

precipitaciones (tiempo inestable)

UNIDAD 8: Sistemas fluidos externos

Page 36: Atmósfera y climatología

Eduardo Gómez

B A 1024 mb1020 mb

1016 mb

1012 mb

1008 mb

1004 mb1000 mb

996 mb

La presión disminuye

La presión aumenta

Isobaras

VARIACIÓN DE LA PRESIÓN EN BORRASCAS Y ANTICICLONES

Hay altas presiones (anticiclones) cuando los valores superan los 1012 mb o hPa, y bajas presiones (borrascas) en caso contrario. Los valores de la presión atmosférica varían con la altitud, situación geográfica y el tiempo.

Dinámica atmosférica

UNIDAD 8: Sistemas fluidos externos

NOTA: El valor de la presión atmosférica a nivel del mar fue cuantificado por primera vez, en 1643, por Torricelli y Vivíani, mediante el conocido experimento de Torricelli. Dicho valor corresponde al peso de una columna de mercurio de 76 cm. de altura y 1 cm2 de sección que multiplicado por la densidad de este elemento (13'6 g/cm3), equivale a 1.033'6 g/cm2, valor también conocido como una atmósfera e igual a 1.013 milibares (mb) o hectopascales (hPa). Esta última unidad es la utilizada normalmente en meteorología.

Page 37: Atmósfera y climatología

Eduardo Gómez

Vientos

Dinámica atmosférica

A B A

Aire caliente

Aire frío

Aire frío

En general, el viento sopla desde los anticiclones hacia las borrascas en superficie, y en sentido contrario en altura.

La trayectoria de los vientos no es rectilínea, sino que está modificada por el relieve y el efecto o fuerza de Coriolis.

UNIDAD 8: Sistemas fluidos externos

Page 38: Atmósfera y climatología

Eduardo Gómez

Vientos

Dinámica atmosférica

El VIENTO es el desplazamiento del aire desde los núcleos de alta presión o anticiclones hasta los de baja presión o borrascas. Este movimiento es interferido por la Fuerza de Coriolis, de forma que el desplazamiento del aire no será perpendicular, sino que se hace oblicuo a las líneas isobaras.

UNIDAD 8: Sistemas fluidos externos

Page 39: Atmósfera y climatología

Eduardo Gómez

Efecto de Coriolis

Es una fuerza que surge como consecuencia de la rotación de la tierra en sentido antihorario.

Tiene un valor máximo en los polos y mínima en el ecuador. Esta fuerza afecta a la dirección de los vientos, aguas y, en general, a cualquier móvil que se mueva sobre la superficie terrestre.Debido a la rotación terrestre (de O. a E.) y a la diferente velocidad tangencial de las distintas latitudes todo móvil que se desplace desde el polo N. al ecuador, siguiendo un meridiano, sufrirá una desviación a la derecha. De igual modo, todo móvil que se desplace desde el polo S. hacia el ecuador sufrirá una desviación a la izquierda.

Animación sobre el efecto de Coriolis:http://www.classzone.com/books/earth_science/terc/content/visualizations/es1904/es1904page01.cfm?chapter_no=19

Dinámica atmosférica

UNIDAD 8: Sistemas fluidos externos

Page 40: Atmósfera y climatología
Page 41: Atmósfera y climatología

Eduardo Gómez

En las zonas ecuatoriales (máxima insolación) el aire se calienta y asciende (borrascas ecuatoriales). En las zonas polares, el frío provoca que el aire descienda y se aplaste contra el suelo, formando un anticiclón permanente en estas zonas. Si la tierra no rotase y tuviera una superficie uniforme, la circulación de los vientos sería como indica la figura de la derecha.

La rotación terrestre y la forma achatada de la Tierra en los polos produce la fuerza de Coriolis que, a su vez, va a provocar un desvío de las corrientes de aire, provocando que el transporte se lleve a cabo mediante tres células convectivas en cada hemisferio.

Dinámica atmosférica

UNIDAD 8: Sistemas fluidos externos

Page 42: Atmósfera y climatología

Eduardo Gómez

• Célula Polar. El aire procedente de los polos se calienta y eleva a latitud 60º creando borrascas que afectan a nuestro país en invierno. Es directa.

• Célula de Ferrel: Es por la acción indirecta de los vientos que soplan desde los anticiclones tropicales hasta las borrascas polares. Es inversa, arrastrada por las otras dos.

• Célula de Hadley. Muy energética por los rayos solares, al llegar a los 30º desciende formando anticiclones y desiertos. Es directa.

Dinámica atmosférica

UNIDAD 8: Sistemas fluidos externos

Page 43: Atmósfera y climatología

Eduardo Gómez

En el ecuador, el aire cálido se eleva y se condensa en grandes nubes y tormentas que liberan calor y conduce el aire hacia partes más altas de la atmósfera. Allí, el aire se traslada hacia los polos y se enfría a medida que se mueve. El aire converge a una altura aproximada de 30° de latitud. La convergencia del aire hace que este se hunda o asiente en esta latitud. Esto determina la divergencia del aire en la superficie terrestre, generando un cielo despejado y vientos superficiales suaves y variables. Las latitudes de 30° se conocen como zonas de calmas subtropicales porque era allí donde se encalmaban los barcos de vela que viajaban al Nuevo Mundo.

De las zonas de calmas subtropicales, una parte del aire superficial regresa al ecuador. Debido al efecto de Coriolis, los vientos soplan desde el NE en el hemisferio N y desde el SE en el hemisferio S. Son los alisios, que convergen alrededor del ecuador en una región denominada la zona de convergencia intertropical (ZCIT). Este aire ecuatorial convergente se calienta y se eleva a lo largo del ciclo.

UNIDAD 8: Sistemas fluidos externos

Page 44: Atmósfera y climatología
Page 45: Atmósfera y climatología

Eduardo Gómez

En las latitudes de 30° C, una parte del aire superficial va hacia los polos. La fuerza de Coriolis desvía estos vientos hacia el E. Estos vientos superficiales se vientos del oeste o ponientes (westerlies). La mayor parte del aire húmedo de las regiones del sur se desplaza hacia el norte. Esta humedad se condensa y libera la energía que ayuda a calentar el aire en las latitudes del norte.

En las áreas que se encuentran entre las latitudes de 60° y los polos, dominan los vientos polares del este (levantes polares). Forman una zona de aire frío que sopla hacia el SE (hemisferio del norte) y hacia el NE (hemisferio del sur) hasta que se encuentran con los del oeste, más cálidos.

UNIDAD 8: Sistemas fluidos externos

Page 46: Atmósfera y climatología

Eduardo Gómez

A medida que el aire húmedo y cálido, característico de los vientos del oeste, ejerce una presión sobre los del este, fríos y más secos, se desarrolla un clima tempestuoso. Por consiguiente, el frente polar generalmente está acompañado por nubes y precipitaciones.

La zona de contacto entre los vientos polares del este y los ponientes más cálidos es el frente polar, que se traslada a medida que ambas masas de aire se presionan entre sí de un lado al otro.

El frente polar ayuda al aire frío a desplazarse hacia el sur y al aire húmedo y cálido, hacia el norte (hemisferio del norte) y, de ese modo, transporta energía calorífica a las regiones polares.

UNIDAD 8: Sistemas fluidos externos

Page 47: Atmósfera y climatología

Formación y desarrollo de una borrasca. a) El rozamiento entre el aire polar y el aire cálido procedente del SO produce irregularidades en la superficie de separación, b) En ellas ambos adquieren un movimiento circular formando una borrasca con un frente cálido, en el que el aire cálido, por ser menos denso, asciende sobre el primero, enfriándose adiabáticamente y dando lugar a nubes y precipitaciones. Dichas borrascas tienden a desplazarse hacia el Este, de forma que tras el frente cálido suele aparecer una mejoría transitoria con escasa nubosidad. Posteriormente el mismo lugar será alcanzado por el frente frío que avanza empujando e introduciéndose bajo el aire cálido y produciendo las consiguientes precipitaciones. El frente frío suele ser más activo y veloz, por lo cual termina por alcanzar al frente cálido produciéndose la oclusión (c) y desaparición (d) de la borrasca.

UNIDAD 8: Sistemas fluidos externos

Page 48: Atmósfera y climatología

Eduardo Gómez

Como consecuencia de la inclinación del eje de rotación de La Tierra, a lo largo de las estaciones, las células convectivas se desplazan en dirección N-S produciendo las breves estaciones lluviosas en las zonas subtropicales, la llegada de aire polar en las zonas templadas, etc.

UNIDAD 8: Sistemas fluidos externos

Page 49: Atmósfera y climatología

Se trata de una corriente impetuosa de aire, que se origina en el límite superior de la troposfera debido al contraste térmico entre dos masas de aire. Tiene forma aplanada y fluye entre los 7.000 y 15.000 m de altitud, mayor en verano que en invierno. Puede alcanzar 500 km/h y, a veces, 600 km/h.

Se presenta casi de un modo constante en las latitudes medias de ambos hemisferios. Su trayectoria suele ser de oeste a este, también puede cambiar de rumbo incluso ser circular. En el verano muestra un esquema zonal desplazándose de oeste a este a gran velocidad y formando una línea continua que impide el intercambio de masas de aire. En invierno es cuando presenta grandes perturbaciones (ondas de Rossby).

La corriente de chorro

Page 50: Atmósfera y climatología

Eduardo Gómez

• Gradiente vertical de Tª (GVT o GTV): variación vertical de Tª en condiciones estáticas o de reposo (0,65ºC/100m). Es un valor muy variable, ya que depende de la latitud, la altura, la estación del año….

• En ocasiones, la temperatura puede aumentar con la altura, (GVT < 0). Este fenómeno se llama INVERSIÓN TÉRMICA.

Estabilidad e inestabilidad atmosférica

Gradientes verticales de temperatura

Temperatura ºC

Altit

ud (m

)

a b ca

b c

UNIDAD 8: Sistemas fluidos externos

Page 51: Atmósfera y climatología

Eduardo Gómez

Estabilidad e inestabilidad atmosférica

Inversiones térmicas

Temperatura ºC

Altit

ud (m

)

b c

b

Las inversiones térmicas dificultan o incluso impiden los movimientos verticales del aire.

Se puede presentar en cualquier sitio de la troposfera (la tropopausa es una inversión térmica permanente).

c

En invierno son muy frecuentes a nivel del suelo debido a que este enfría mucho la capa de aire adyacente. Esta capa de aire queda a una temperatura inferior a la de las capas superiores.

Estos gradientes son estáticos, el aire no se mueve.

UNIDAD 8: Sistemas fluidos externos

Page 52: Atmósfera y climatología

Eduardo Gómez

Estabilidad e inestabilidad atmosférica

Inversiones térmicas

Altura

Suelo

Convergencia frontal

Subsidencia

Aire frio

Aire caliente

Aire más frío

Aire más caliente

UNIDAD 8: Sistemas fluidos externos

Page 53: Atmósfera y climatología

Eduardo Gómez

Estabilidad e inestabilidad atmosférica

Inversiones térmicas

El aire de las capas inferiores, más frío que el de capas superiores no puede contener tanto vapor de agua, se satura y se forman nieblas y nubes bajas.

UNIDAD 8: Sistemas fluidos externos

Page 54: Atmósfera y climatología

Eduardo Gómez

Estabilidad e inestabilidad atmosférica

Gradiente adiabático seco (GAS):• Un proceso adiabático es aquel en el que no se

produce transferencia de calor ni de masa a través de las fronteras de una porción de aire.

• Se considera que el aire es seco ya que el agua que contiene permanece en estado gaseoso.

• En este proceso, la compresión da lugar al calentamiento, y la expansión al enfriamiento.

• Una porción de aire seco que se eleva en la atmósfera se enfría según el gradiente adiabático seco de 1 °C/100 m y presenta un gradiente vertical de -1°C/100 m.

• De manera similar, al descender, se calienta 1ºC/100m.

Tª 1

Tª 2

Al ascender se enfría a razón de

1ºC/100m

Al descender se calienta a razón

de 1ºC/100m

UNIDAD 8: Sistemas fluidos externos

Page 55: Atmósfera y climatología

Eduardo Gómez

Estabilidad e inestabilidad atmosférica

• El gradiente vertical adiabático seco es fijo, totalmente independiente de la temperatura del aire ambiental.

• Siempre que una porción de aire seco ascienda en la atmósfera, se enfriará en el gradiente de 1 °C/100 m , independientemente de cuál haya sido su temperatura inicial o la del aire circundante.

• Un diagrama adiabático simple demuestra la relación entre la elevación y la temperatura.

UNIDAD 8: Sistemas fluidos externos

Page 56: Atmósfera y climatología

Eduardo Gómez

Estabilidad e inestabilidad atmosférica

Gradiente adiabático húmedo (GAH)Al elevarse, una porción de aire seco que contiene vapor de agua se enfría según el gradiente adiabático seco hasta que alcance su temperatura de condensación o punto de rocío.

En este punto una parte del vapor de agua se comienza a condensar.

La condensación (proceso exotérmico) libera calor y, por tanto, el aire se calienta. Así, la disminución térmica es menor que en los casos anteriores.

Aire seco

Aire saturado

Aire seco con vapor de agua

Punto de rocío

La condensación libera calor

UNIDAD 8: Sistemas fluidos externos

Nivel de condensación

Page 57: Atmósfera y climatología

Eduardo Gómez

Estabilidad e inestabilidad atmosférica

A diferencia del gradiente vertical adiabático seco, no es constante pero depende de la temperatura y la presión. Sin embargo, en la mitad de la troposfera, se estima un gradiente aproximado de 0,3 y 0,6°C/100 m.

A medida que el aire siga perdiendo humedad por efecto de la condensación, el GAH aumenta y cuando ya esté seco de nuevo, su valor volverá a ser el del GAS.

El GAH depende de la cantidad de vapor inicial:

Vapor inicial GAHLiberación de calor

El GAH es mínimo en las zonas ecuatoriales debido a la intensa evaporación

UNIDAD 8: Sistemas fluidos externos

Page 58: Atmósfera y climatología

Eduardo Gómez

Condiciones de inestabilidad atmosférica

Se producen cuando una masa de aire asciende y su temperatura varía según el GAS y está rodeado de aire estático cuya temperatura varía en función del GVT.Si GVT > GAS (aire exterior más frío), el aire asciende y si contiene humedad formará nubes y el viento será convergente (se formará una borrasca) que puede dar lugar a precipitaciones.

Temperatura ºC

Altit

ud (m

)

GAS (1ºC/100m)

Nivel de condensación

Esto puede ser frecuente en días de fuerte insolación, cuando el G.T.V. puede ser de 1,5ºC, superiores al G.A.S. Entonces de produce la formación de nubosidad y la precipitación.

Una vez producida la nubosidad, el enfriamiento del ascenso proseguirá, pero ya según el G.A.H., menor que el G.A.S, ya que la condensación del vapor de agua, como ya se ha dicho, es un proceso exotérmico.

GVT (1,5ºC/100m)

GAH (0,7ºC/100m)

UNIDAD 8: Sistemas fluidos externos

Page 59: Atmósfera y climatología

Eduardo Gómez

Condiciones de inestabilidad atmosférica

El grado de inestabilidad depende de la importancia de las diferencias entre los gradientes verticales ambientales y los adiabáticos secos.

UNIDAD 8: Sistemas fluidos externos

Page 60: Atmósfera y climatología

Eduardo Gómez

• El aire interior se enfría más deprisa que el exterior GVT < GAS.• La masa de aire se ve empujada hacia abajo, se seca por calentamiento y

se aplasta contra el suelo creando una situación anticiclónica.• El viento sale hacia afuera, impidiendo la entrada de precipitaciones.• El tiempo será seco y estable.

Esta situación se llama anticiclónica o de

SUBSIDENCIA

Temperatura ºC

Altit

ud (m

)

GAS (1ºC/100m)

GVT (0,7ºC/100m)

Condiciones de estabilidad atmosférica

UNIDAD 8: Sistemas fluidos externos

Page 61: Atmósfera y climatología

Eduardo Gómez

Condiciones de estabilidad atmosférica

• En las situaciones de estabilidad anticiclónica puede darse un fenómeno de inversión térmica, que forma nubes a ras de suelo (nieblas) y que atrapa la contaminación por subsidencia o aplastamiento contra el suelo.

• En estos casos, el GVT es negativo, es decir, la Tª aumenta con la altura en vez de disminuir.

• Es una situación frecuente por la noche.

• A lo largo del día, cuando el sol calienta el suelo, la capa de inversión desaparece y levanta la niebla.

• En invierno, estas situaciones son más frecuentes porque la atmósfera está muy fría en las capas más cercanas al suelo.

Temperatura ºC

Altit

ud (m

)

GAS (1ºC/100m)

GVT < 0(Negativo)

UNIDAD 8: Sistemas fluidos externos

Page 62: Atmósfera y climatología

Eduardo Gómez

Condiciones de inversiones térmicas

UNIDAD 8: Sistemas fluidos externos

Page 63: Atmósfera y climatología

Eduardo Gómez

Frentes, brisas y vientos

Un frente meteorológico es la frontera que separa dos masas de aire con un gran contraste de temperatura y humedad. Las distintas densidades obligan a que el aire caliente (menos denso) ascienda sobre el aire frío.

Las masas de aire se comportan como sistemas aislados, sin mezclarse. La ascensión forzada del aire caliente provoca condensación, nubosidad y precipitaciones.

Corrientes térmicas

UNIDAD 8: Sistemas fluidos externos

Page 64: Atmósfera y climatología

Eduardo Gómez

Tipos de frentes

Frente Frío

Una masa de aire frío se mueve y alcanza a una masa de aire cálido o choca contra ella.

El aire cálido de ve obligado a ascender formando una borrasca con nubes de desarrollo vertical (cumulonimbus) que provocan precipitaciones intensas al paso del frente.

UNIDAD 8: Sistemas fluidos externos

Page 65: Atmósfera y climatología

Eduardo Gómez

Tipos de frentes

Frente Cálido

El aire cálido se mueve y encuentra una masa de aire frío. El ascenso se produce de forma más suave que en los frentes fríos, formando nubes de desarrollo horizontal (nimbostratos, altoestratos) que originan lluvias débiles y persistentes

UNIDAD 8: Sistemas fluidos externos

Page 66: Atmósfera y climatología

Eduardo Gómez

UNIDAD 8: Sistemas fluidos externos

Page 67: Atmósfera y climatología

Eduardo Gómez

Frente Ocluido

Se superponen dos frentes, el frío va mas rápido, atrapa al frente cálido y el frente cálido pierde contacto con el suelo, originando lluvias.

Independientemente del tipo de frente ocluido que se aproxime, las nubes y precipitaciones resultantes de tal frente serán similares a las de un frente cálido.

A medida que el frente pasa, las nubes y la precipitación se parecerán a las de un frente frío.

Tipos de frentes

UNIDAD 8: Sistemas fluidos externos

Page 68: Atmósfera y climatología

Eduardo Gómez

Brisas

La brisa es un tipo de viento local motivado por el movimiento de masa de aire debido al heterogéneo calentamiento del relieve terrestre por el Sol.

Se producen movimientos verticales de las masas de aire que provocan vacíos y desequilibrios de presión. Para restablecer estas inestabilidades, nuevas masas de aire se desplazan para llenar estos vacíos de baja presión. Se distinguen los siguientes tipos de brisas:

• Brisas marinas.• Brisas de valle y montaña.

A: Brisa marina diurnaB: Brisa terrestre nocturna

UNIDAD 8: Sistemas fluidos externos

Page 69: Atmósfera y climatología

Eduardo Gómez

Vientos de montaña - valle

Se origina en las laderas iluminadas por el sol. Cuando las laderas y el aire próximo a ellas están calientes la densidad del aire disminuye, y el aire asciende hasta la cima siguiendo la superficie de la ladera. Durante la noche la dirección del viento se invierte, convirtiéndose en un viento que fluye ladera abajo. Si el fondo del valle está inclinado, el aire puede ascender y descender por el valle; este efecto es conocido como viento de cañón.

UNIDAD 8: Sistemas fluidos externos

Page 70: Atmósfera y climatología

Eduardo Gómez

Efecto Föehn

• Se produce en relieves montañosos cuando una masa de aire cálido y húmedo es forzada a ascender para salvar un obstáculo.

• Esto hace que el vapor de agua se enfríe (según el GAH) y sufra un proceso de condensación en la ladera de barlovento donde se forman nubes y lluvias orográficas.

• En la ladera de sotavento el tiempo está despejado y la temperatura aumenta por el proceso de compresión adiabática.

• Este proceso está motivado porque el aire ya seco y cálido desciende rápidamente por la ladera, calentándose a medida que desciende (según el GAS) y con un humedad sumamente escasa.

Barlovento Sotavento

UNIDAD 8: Sistemas fluidos externos

Page 71: Atmósfera y climatología

Eduardo Gómez

Las nubes están formadas por grupos de pequeñísimas gotas de agua o cristales de hielo en el cielo. Están asociadas con distintos tipos de precipitaciones, dependiendo de la temperatura de la atmósfera. Aproximadamente, el 50% de nuestro planeta siempre está cubierto de nubes.

Las nubes pueden tener todos los tamaños y formas. Pueden formarse cerca del suelo o alto en la atmósfera.

Los diferentes tipos de nubes se clasifican según su altura y apariencia. Su forma depende de la forma en que el viento se mueve alrededor de ellas. Si el viento se mueve en dirección horizontal, las nubes se extienden en capas. Las nubes crecen ascendentemente cuando el viento va en esa misma dirección.

Nubes y precipitaciones

UNIDAD 8: Sistemas fluidos externos

Page 72: Atmósfera y climatología

Eduardo Gómez

Tipos de nubes

Estratos. Planos de gran extensión y bastante uniformes. Cúmulos. Masas aisladas de nubes voluminosas con su porción superior a modo de coliflor. Cirros. De aspecto filamento o sedoso con cristales de hielo. Nimbos. Nubes de temporal.Estratocúmulos, Cumulonimbos. Lo normal es que aparezcan nubes con características intermedias, como éstas o los cirroestratos, altoestratos,...

Según su forma

Según su altitud Bajas. Hasta 2.500 m Medias. De 2.500 m a 6.000 m Altas. Más de 6.000 m

Según su estructura

Nubes de agua. Formas perfectamente delineadas y delimitadas al menos en sentido vertical. Nubes de hielo. Estructura deshilachada con contornos indefinidos. Nubes de chubasco. Se alargan en forma de yunque u hongo de hielo.

UNIDAD 8: Sistemas fluidos externos

Page 73: Atmósfera y climatología

Eduardo Gómez

Tipos de nubes

UNIDAD 8: Sistemas fluidos externos

Page 74: Atmósfera y climatología

Eduardo Gómez

TIPOS DE PRECIPITACIÓN

LLUVIA. Se produce por la unión de muchas gotas de pequeño tamaño que dan lugar a gotas mayores, incapaces de mantenerse en suspensión. Cuando su diámetro es < 0,5 mm constituyen la llovizna.

NIEVE. Constituida por masas de cristales de hielo formados directamente a partir del vapor de agua atmosférico allí donde la temperatura del aire es inferior al punto de congelación. Son cristales planos hexagonales o prismáticos.

GRANIZO. Son formas redondeadas de hielo con una estructura interna en capas concéntricas, de 0,5 a 5 cm de media, sólo se forman en los cumulonimbos donde existen fortísimas corrientes de aire ascendentes. Las gotas de lluvia son arrastradas a grandes alturas donde se congelan para volver a caer y mantenidas en suspensión. Cada granizo crece por la unión de nuevas gotas hasta precipitar.

UNIDAD 8: Sistemas fluidos externos

Page 75: Atmósfera y climatología

Eduardo Gómez

ROCÍO. Se produce en la superficie terrestre cuando ésta y las partículas de vapor de agua contenidas en el aire sufren un enfriamiento por pérdida de calor, se alcanza el punto de rocío (temperatura a la cual el aire está saturado) y se enfría algo más.

ESCARCHA. Es igual al rocío, pero se produce cuando la temperatura está por debajo de 0 °C.

NIEBLA. Condensación de las masas húmedas de aire en las capas inferiores de la atmósfera.

TIPOS DE PRECIPITACIÓN

UNIDAD 8: Sistemas fluidos externos

Page 76: Atmósfera y climatología

¿Qué es un huracán?

Un huracán, también llamado ciclón o tifón, es una tormenta tropical con fuertes vientos que circulan alrededor de un área de baja presión. Podemos hablar de huracán cuando los vientos de la tormenta soplan a 74 millas (119 km) por hora.

LOS HURACANES

Los vientos y lluvias que forman un huracán se pueden extender por cientos de millas. La parte más peligrosa de un huracán es la columna de agua marina que impulsa el viento y que suele inundar la costa cuando el huracán entra a tierra.El ojo (también llamado vórtice) es, en comparación, un área relativamente tranquila.

UNIDAD 8: Sistemas fluidos externos

Page 77: Atmósfera y climatología

¿Cómo se forma un huracán?

Para que se forme un huracán hace falta que el agua esté entre 25°C y 27°C. Esto explica el debilitamiento de los huracanes al acercarse a aguas más frías o al entrar en tierra.

Cuando el agua del mar se evapora, el aire húmedo aumenta su temperatura y se eleva. Más aire húmedo de los alrededores remplaza al aire que ha subido, lo que causa viento en espiral.

El aire que sube va formando nubes y libera calor que da fuerza a los vientos. El aire de la parte baja fluye hacia el centro del sistema y circula a su alrededor, dejando en el centro un área de relativa calma que se conoce como el ojo del huracán.

Ver animación

LOS HURACANES

UNIDAD 8: Sistemas fluidos externos

Page 78: Atmósfera y climatología

Un tornado es una perturbación meteorológica que se forma cuando el aire cálido de las capas inferiores de la atmósfera se mezcla con aire frío y seco de las capas superiores. Esto genera una repentina bajada de la presión, violentos vientos y una singular forma de embudo.

Este fenómeno se asocia a los ciclones tropicales que cuando soplan en los continentes producen las condiciones más favorables para su formación.Los tornados no son huracanes y, contrariamente a lo que se suele creer, son más pequeños y duran menos.

LOS TORNADOS

UNIDAD 8: Sistemas fluidos externos

Page 79: Atmósfera y climatología

CLIMAS Y CLIMOGRAMAS

Page 80: Atmósfera y climatología

CLIMAS Y CLIMOGRAMAS.• ELEMENTOS DEL CLIMA• TEMPERATURA Y ZONAS TÉRMICAS.• TIPOS DE CLIMAS.• CLIMOGRAMAS.

ELEMENTOS DEL CLIMA.

• TEMPERATURA: Se mide en grados centígrados (ºC) y es resultado de factores astronómicos y geográficos.

• PRECIPITACIÓN: se mide en mm o l/metro cuadrado y es resultado de factores dinámicos y térmicos.

• HUMEDAD RELATIVA: se mide en % y es resultado de la evaporación y de los vientos.

• VIENTOS: son resultado de las diferencias de presión y dan lugar a las precipitaciones.

Page 81: Atmósfera y climatología

TEMPERATURA Y ZONAS TÉRMICAS

• Desde el punto de vista térmico, existen en el planeta tres grandes ZONAS CLIMÁTICAS, que son consecuencia del MOVIMIENTO DE TRASLACIÓN de La Tierra:– ZONA CÁLIDA, entre los dos trópicos.– ZONA TEMPLADA, entre el trópico y el círculo

polar de cada hemisferio.– ZONA FRÍA, entre el círculo polar y los 90º de

latitud de cada hemisferio.

Page 82: Atmósfera y climatología

TEMPERATURAS Y ZONAS TÉRMICAS MOVIMIENTO DE TRASLACIÓN DE LA TIERRA.

El eje de la Tierra está inclinado respecto al plano de la eclíptica. Como consecuencia, la zona intertropical (cálida) recibe todo el año de manera perpendicular los rayos solares; las zonas polares (fría), reciben los rayos solares siempre paralelos; y la zonas intermedias (templada)

los reciben más o menos perpendiculares según la época del año, ocasionando las estaciones.

Page 83: Atmósfera y climatología

TEMPERATURAS Y ZONAS TÉRMICASZONAS CLIMÁTICAS.

El movimiento de traslación produce la existencia de una zona cálida intertropical, dos zonas templadas y dos zonas frías, tal y

como se puede observar en la imagen.

Page 84: Atmósfera y climatología

LLUVIAS Y TIPOS DE CLIMA

• La lluvia, como precipitación, es el resultado de la condensación del vapor de agua contenido en una masa de aire. A menor temperatura menor es, asimismo, la capacidad para contener vapor de agua; por ello, cuando el aire asciende, al enfriarse, se produce condensación y nubosidad (Inestabilidad). Por el contrario, cuando el aire desciende (subsidencia) se produce estabilidad atmosférica con ausencia de nubosidad y precipitación.

• La cantidad de precipitación anual genera una subdivisión dentro de las grandes zonas térmicas (CÁLIDA, FRÍA Y TEMPLADA). En las zonas cálida y templada, la circulación general introduce diferencias internas desde el punto de vista de la humedad y la precipitación, dando lugar a los distintos tipos de clima.

Page 85: Atmósfera y climatología

TIPOS DE CLIMA: ZONA CÁLIDA

• La zona cálida es el área intertropical (rayos solares perpendiculares durante todo el año).

• El movimiento estacional de las altas presiones subtropicales y las bajas ecuatoriales explica los tres tipos de clima que encontramos en la zona (Ecuatorial, Tropical y Desértico).

Page 86: Atmósfera y climatología

Tipos De Clima: ZONA CÁLIDA

• Todo el sistema se desplaza estacionalmente: hacia el norte en el verano del hemisferio sur y hacia el sur en el invierno del hemisferio sur.

• Como consecuencia, se determinan tres tipos de clima.• En la zona próxima al ecuador, donde actúan todo el año las bajas presiones

ecuatoriales, encontramos un clima cálido y húmedo todo el año (ECUATORIAL); En las zonas próximas a las altas presiones subtropicales, el clima es cálido y seco todo el año (DESÉRTICO); Y, en las zonas intermedias que están afectadas una parte del año por las altas presiones y otra parte, por las bajas, el clima tiene una estación seca y otra húmeda (TROPICAL).

Altas presiones subtropicales ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Alisios (NE)

Bajas presiones ecuatoriales (ZCIT) Alisios (SE) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Altas presiones subtropicales.

Page 87: Atmósfera y climatología

TIPOS DE CLIMA: ZONA TEMPLADA

• En la zona templada, predomina la circulación del oeste, por lo cual las fachadas oeste de los continentes son más húmedas y presentan una menor amplitud térmica.

• Asimismo, y desde el punto de vista de la latitud, podemos dividir la zona en dos subzonas: por encima de los 40º norte o sur, nos encontramos con una subzona templada “fría”; por debajo de los 40º norte o sur, nos encontramos con una subzona templada “cálida”.

• Combinando esos factores (CIRCULACIÓN DEL OESTE Y DIVISIÓN LATITUDINAL), y añadiéndoles la CONTINENTALIDAD, podemos dividir la zona templada en cuatro cuadrantes que nos explican los cuatro tipos de clima existentes en la misma: OCEÁNICO, MEDITERRÁNEO, CONTINENTAL Y SUBTROPICAL TIPO CHINO.

Page 88: Atmósfera y climatología

ZONA FRÍA

• En la zona fría, los rayos solares inciden paralelos durante todo el año. Comprende las áreas próximas a cada uno de los polos.

• Las temperaturas están casi todo el año por debajo de 0º; sólo en verano adquieren valores positivos, que no suelen sobrepasar los 4ºC. Las precipitaciones son escasas.

• Una variante azonal de este clima es el CLIMA DE MONTAÑA.

Page 89: Atmósfera y climatología

LOS CLIMOGRAMAS

• La escala de precipitaciones (a la derecha de la imagen) debe de ser siempre el doble que la de temperaturas (a la izquierda), pues se aplica así un índice de aridez según el cual un mes es seco o árido cuando la precipitación en mm. no supera el doble de la precipitación en ºC.

• De este modo, podemos determinar la existencia de estación seca, así como cuantos meses dura la misma.

• Un climograma es la representación gráfica de la evolución de las temperaturas medias mensuales (ºC) y de las precipitaciones (en mm o l/m2 ) en un lugar, tomando los valores medios de 20 ó 30 años.

Page 90: Atmósfera y climatología

CLIMOGRAMAS: MEDITERRÁNEO

• Estación seca en verano.• Verano cálido e invierno suave.• Precipitaciones: máximos en otoño e invierno.

SEVILLA (ESPAÑA)

0

5

10

15

20

25

30

35

40

45

50

37ºN 5ºO 30 m. altitud

TºC

0

10

20

30

40

50

60

70

80

90

100

Pmm Pmm

TºC

Page 91: Atmósfera y climatología

CLIMOGRAMAS: OCEÁNICO• Sin estación seca. Húmedo todo el año.• Verano fresco e invierno suave o poco frío. BURDEOS (FRANCIA).

0

10

20

30

40

50

60

43ºN 0º Log. 48 m. altitud

TºC

0

20

40

60

80

100

120

Pmm

PmmTºC

Page 92: Atmósfera y climatología

CLIMOGRAMAS: DESÉRTICO

• Seco todo el año.• Invierno muy suave y verano bastante caluroso.

IN SALAH (ARGELIA)

05

10152025303540

27ºN 2ºE 280 m. altitud

TºC

01020304050607080

Pm

m PmmTºC

Page 93: Atmósfera y climatología

CLIMOGRAMAS: ECUATORIAL• Sin estación seca. Húmedo todo el

año.• Temperaturas calurosas todo el año,

sin variación .

Colombo (SRI LANCA).

0

20

40

60

80

100

120

140

160

180

200

6ºN 79ºE. 7 m. altitud.

TºC

0

50

100

150

200

250

300

350

400

Pmm

CLIMA 15: ECUATORIAL 2 PmmCLIMA 15: ECUATORIAL 2 TºC

Page 94: Atmósfera y climatología

CLIMOGRAMAS: TROPICAL SECO• Sólo un mes húmedo.• Temperaturas cálidas o calurosas todo el año, con variación estacional

por localizarse en zonas cercanas a las altas presiones subtropicales y a los climas desérticos. Karachi (PAKISTAN).

0

5

10

15

20

25

30

35

40

45

24ºN 60ºE 4 m. altitud

TºC

0

10

20

30

40

50

60

70

80

90

Pmm

PmmTºC

Page 95: Atmósfera y climatología

CLIMOGRAMAS: TROPICAL HÚMEDO• Breve estación seca.• Temperaturas uniformes y

cálidas durante todo el año por localizarse cerca de las bajas presiones ecuatoriales.

LAGOS (NIGERIA).

0

50

100

150

200

250

6ºN 3ºE 0 m. altitud

TºC

0

50

100

150

200

250

300

350

400

450

500

Pmm

PmmTºC

Page 96: Atmósfera y climatología

CLIMOGRAMAS: POLAR• Breve estación seca de un mes,

en verano.• Temperaturas muy frías, sólo

por encima de 0ºC durante el verano, y sin alcanzar los 5ºC.

BARROW POINT(ALASKA).

-32,5

-27,5

-22,5

-17,5

-12,5

-7,5

-2,5

2,5

7,5

12,5

71ºN 156ºO 6 m. altitud

TºC

-65

-55

-45

-35

-25

-15

-5

5

15

25

Pmm

PmmTºC