30
Generalized Barycentric Coordinates

Generalized Barycentric Coordinates

Embed Size (px)

DESCRIPTION

My presentation on the "Geometric and Visual Computing Seminar" at the Universita della Svizzera italiana. The topic covered is generalized barycentric coordinates for convex polygons. At the beginning I do some short introduction into what is barycentric coordinates and then consider two types of generalization of these coordinates to convex polygons namely Wachspress and Mean Value Coordinates. Date of presentation: April 2012 For preparing my slides I take pictures and some other information from the internet and I try to use only legal one. But if I did not notice something and you have Rights for any kind of this information and do not want to see it in the presentation please let me know and I will remove it from the slides as fast as possible or remove the slides themselves. Thanks for your collaboration.

Citation preview

Page 1: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Page 2: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Simple  

Page 3: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Simplex  

Page 4: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Simplex  

Page 5: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

V1

V3 V2

P A2

A1

A3

A=A1+A2+A3

b1=A1/A b2=A2/A b3=A3/A

Page 6: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

1790-1868

1827

V1

V3 V2

P A2

A1

A3

A=A1+A2+A3

b1=A1/A b2=A2/A b3=A3/A

Page 7: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Proper:es:  

•  P is  inside  the  triangle  if  and  only  if  0 < b1, b2, b3 < 1.

Ø  If  b1, b2, b3 > 0 hence  P -­‐ within  the  interior  of  the  triangle.  

Ø  If  one  of  bi = 0 hence  P -­‐  on  some  edge  of  the  triangle.  

Ø  If  two  of  bi = 0 hence  P -­‐  in  some  vertex  of  the  triangle.  

Ø  b1 + b2 + b3 = 1.

Page 8: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Proper:es:  

•  By  changing  the  values  of  b1, b2, b3 between  0  and  1,  the  point  P      will  move  smoothly  inside  the  triangle.  

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 9: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Proper:es:  

•  P is  the  barycenter  of  the  points  v1, v2 and  v3 with  weights  A1, A2 and  A3 if  and  only  if:  

  P =

•  The  center  of  the  triangle  is  obtained  when  b1 = b2 = b3 = .

A1v1+A2v2+A3v3

A1+A2+A3

13

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 10: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Proper:es:  

•  P is  inside  the  triangle  if  and  only  if  0 < b1, b2, b3 < 1.

•  By  changing  the  values  of  b1, b2, b3 between  0  and  1,  the  point  P  will  move  smoothly  inside  the  triangle.  

•  P is  the  barycenter  of  the  points  v1, v2 and  v3 with  weights  A1, A2 and  A3 if  and  only  if:  

P =  

A1v1+A2v2+A3v3

A1+A2+A3

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 11: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Applica:ons:  •  Since  P is  inside  the  triangle  if  and  only  if  0 < b1, b2, b3 < 1

we  can  determine  if  a  point  P  is  inside  the  triangle.    •  Since  all  bi are  linear  polynomials  and  by  changing  the  values  of  b1, b2, b3 between  0  

and  1,  the  point  P  moves  smoothly  inside  the  triangle  

we  can  linearly  interpolate  data  placed  in  the  ver:ces  overall  triangle:    

F = bifi

i =1

3

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 12: Generalized Barycentric Coordinates

Outline:  

•  Introduc:on  

•  Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  

Page 13: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

vi

vi+1

vi-1

P

Ai-1

Ai

Page 14: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Ai-1

Ai vi

vi+1

vi-1

P

Bi

Page 15: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Ai-1 Ai Bi

bi=

wi

wjj =1

n∑

Normalized  Barycentric  Coordinates:  

Where  weights:   wi=c

i +1A

i −1−c

iB

i+c

i −1A

i

Ai −1

Ai

with  certain  real  func:ons  ci .  

Page 16: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

I.e.  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

bi=1

i =1

n∑

biv

i= P

i =1

n∑

Page 17: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

YES for

biv

i= P

i =1

n∑

bi=1

i =1

n∑

I.e.  

Page 18: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

YES for

bi=1

i =1

n∑

biv

i= P

i =1

n∑

I.e.  

Page 19: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

bi=1

i =1

n∑

biv

i= P

i =1

n∑

YES for

To  get  Posi:vity  we  have  to  properly  choose  func:ons  ci .  

I.e.  

Page 20: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

We  choose  func:ons  ci to  be  Euclidean  distance  between  P and  vi to  the  power  k    :  

ci = rik with  ri = ||P - vi|| and    

vi

P

ri

k ∈ R

Page 21: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

bi=1

i =1

n∑

biv

i= P

i =1

n∑

YES for I.e.  

Page 22: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

With  such  a  choice  of  ci we  get  a  whole  family  of      three-­‐point  coordinates  bi :  

bi=

wi

wjj =1

n∑

with   wi=ri +1k A

i −1−r

ikB

i+r

i −1k A

i

Ai −1

Ai

Bi Ai-1

Ai ri-1 ri

ri+1

Page 23: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Three-­‐point  coordinates:  

•  Wachspress  Coordinates  for  k = 0    and  ci = 1.  

•  Mean  Value  Coordinates  for  k = 1 and  ci = ri  .  

Page 24: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Wachspress  coordinates:  For  the  first  :me  they  were  introduced  by  E.  L.  Wachspress  in  the  work:    “A  Ra:onal  Finite  Element  Basis”  in  1975.  

Weight  func:ons:   wi=

Di

Ai −1

Ai

and   bi=

wi

wjj =1

n∑

Di Ai-1 Ai

Page 25: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Wachspress  coordinates:  

•  Affine  precision:    •  Lagrange  property:    •  Smoothness:  bi are  C∞  inside  arbitrary  polygons*  

•  Par::on  of  unity:    

•  Behavior:  bi are  well-­‐defined  inside  convex  polygons  

•  Posi:vity:  bi are  posi:ve  inside  convex  polygons  

biϕ(v

i)

i =1

n∑ = ϕ for  any  affine  func:on    ϕ : R2 →Rd

bi(v

j) = δ

i , j=

1,i = j0,i ≠ j

#$%

&%

bi=1

i =1

n∑

*Except  poles  

Page 26: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Wachspress  coordinates:  

Page 27: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Mean  Value  coordinates:  For  the  first  :me  they  were  introduced  by  M.  Floater  in  the  work:    “Mean  Value  Coordinates”  in  2003.  

Weight  func:ons:  wi=ri −1

Ai−r

iB

i+r

i +1A

i −1

Ai −1

Ai

and   bi=

wi

wjj =1

n∑

Bi Ai-1

Ai ri-1 ri

ri+1

Page 28: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Mean  Value  coordinates:  

•  Affine  precision:  

•  Lagrange  property:  

•  Smoothness:  bi are  C∞  inside  arbitrary  polygons  except  at  the  ver:ces  vj where  they  are  only  C0  

•  Par::on  of  unity:    

•  Behavior:  bi are  well-­‐defined  inside  arbitrary  polygons    •  Posi:vity:  bi are  posi:ve  inside  convex  polygons  

biϕ(v

i)

i =1

n∑ = ϕ for  any  affine  func:on    ϕ : R2 →Rd

bi=1

i =1

n∑

bi(v

j) = δ

i , j=

1,i = j0,i ≠ j

#$%

&%

Page 29: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Mean  Value  coordinates:  

Page 30: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates