27
Advancements in Ceramic Coating Technology for the Power Generation Industry Aldrin Arquillano M.Eng, Research Associate Furnace Mineral Products Inc. (FMP Coatings)

Advancements in Ceramic Coating Technology for the Power Generation Industry - FMP Coatings

Embed Size (px)

Citation preview

Page 1: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Advancements  in  Ceramic  Coating  Technology  for  the  Power  Generation  

Industry  

Aldrin  Arquillano  M.Eng,  Research  AssociateFurnace  Mineral  Products  Inc.  (FMP  Coatings)

Page 2: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Industrial  processes  are  operating  at  higher  temperatures  and  the  corrosion  rates  are  accelerating

Conventional  organic  coatings  are  exhibiting  limited  success  above  100  oC  in  immersion  service

Next  generation  hybrid  coatings  are  maximizing  temperature  resistance  These  solvent  free  coatings  can  withstand  temperatures  above  200oC  while  

providing  excellent  erosion  and  chemical  resistance

Page 3: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

ØOperating  temperature  (wet/dry)  service  ØIntermittent  /  Upset  exposureØLevels  of  corrosive  liquids/gasesØMicrobial  activity  (SRB)ØCleaning  chemicals/steam  cleaningØRapid  decompressionØCondensate  moistureØCost  of  failure

Page 4: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

High  sulphur  fuel  in  the  presence  of  moisture  forms  sulphuric  acidAcidic  gas  condenses  out  of  the  flue  gas  stream  on  cooling

Acid  condenses  at  115  – 160  oC  resulting  in  aggressive  corrosion

Coating  have  had  limited  success  in  this  environmentThe  combination  of  erosion,  high  wet  temperature  and  strong  acidic  

attack  pushes  the  limits  of  organic  coating  technology

Page 5: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Resistant  to  high  temperature  (265  oC  dry  – 200  oC  wet)• High  wear  resistance• Ambient  temperature  cure• Environmentally  friendly,  zero  VOCs• Chemical  resistant  (H2SO4,  HCl)• Single  coat  high  build  application• Spray  applied• Rapid  return  to  service  

Page 6: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

ORGANIC  CHEMISTRYContains  backbones  comprised  of  chains  and/or  rings  of  carbon  (plant  based)  and  hydrogen  atoms.

INORGANIC  CHEMISTRYContains  backbones  comprised  of  non  carbon  containing  elements  such  as  silicon  (mineral  based).    Silicon  offers  extreme  thermal  stability  and  temperature  resistance

Page 7: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Ceramic  inorganic  chemistry  for  combustion  service  ranging  from  370  to  800  oC• Upon  curing   the  coating  forms  an  amorphous  layer  that  bonds  the  ceramic  matrix  to  the  substrate  surface• Limitations  

– requires  post  cure  at  elevated    temperature– Not  suitable  for  immersion  service– Difficult  to  apply– Thin  film

Page 8: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Glass  Transition  Curve

Cross  Link  Density

Low  Tg Higher  Tg

Why  traditional  epoxies  fail  at  high  temperature  • Low  Tg• Low  cross  link  density• High   free  volume

Page 9: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Epoxy  coatings  are  organic  thermosetting  polymers

• Cure  by  chemical  reaction• Reaction  between  epoxide  resin  and  an  amine  curing  agent

• 3  main  components  to  epoxy  coatings(resin,  hardener  and  modifier)

• Primary  indicator  of  temperature                    resistance  is  Tg

Page 10: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Type Structure Viscosity Tg

Bisphenol A15,000  cps 175 oC

Bisphenol F5,000  cps 150 oC

NovolacSemi Solid  at  

Room  Temperature200  oC

Page 11: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

*Viscosity  of  water  is  1  cps

0

50

100

150

200

250

Bisphenol   F Bisphenol   A Novolac

Resin  Tg (oC)

0102030405060708090

Bisphenol   A Bisphenol   F Novolac  3.6  f

Temperature  at  4,000  cps

0

10

20

30

40

50

60

Bisphenol   A Bisphenol   F Novolac  3.6  f

Percentage  %

Diluent  Requirement  to  Drop  to  4,000  cps

Page 12: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Types  of  Epoxy  Curatives• Polyamide• Aliphatic• Cycloaliphatic• Aromatic  

0

50

100

150

200

250

Amide Aliphatic Cycloaliphatic Aromatic

Temperature  oC

Hardener  Curing  Temperature

Page 13: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Hybridized  • Incorporate  silicon  bonding• High  functionality  novolac epoxy• Ceramic  fillers• Cycloaliphatic amine  or  aromatic  amine

Page 14: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Include  rubber,  ceramics,  pigment,  solvent,  fillers,  flame  retardants,  and  diluents• Use  of  solvent  or  non  reactive  diluents  must  be  avoided  (xylene,  benzyl  alcohol)• Reactive  diluent  avoided  or  only  low  levels• Fillers  must  be  thermally  stable  at  higher  temperature

Page 15: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Solvency  – viscosity  reduction• Environmental  impact• Sacrifice  performance• Will  not  survive  high  temperature  exposure

Autoclave  Testing  96  hrs at  120  oC  at  vapour  pressure

Page 16: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• A  100%  solids  coating  system  is  defined  as  a  coating  that  results  in  no  film  thickness  change  during  application.  

• So  how  does  a  formulator  of  100%  solids  coating  drive  down  the  viscosity  so  that  the  coating  can  be  sprayed  or  rolled  ?    

• The  trick  is  the  use  of  a  high  boiling  point  solvent  (ie,  benzyl  alcohol)  that  is  volatile  but  also  reacts  with  the  epoxide  group  of  the  coating  so  that  the  bulk  of  the  solvent  remains  in  the  coating  system.

• In  high  temperature  systems  this  approach  DOES  NOT  work• To  overcome  the  need  for  solvent  or  diluent,  the  system  must  be  heated  to  reduce  viscosity

Page 17: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Two  methods• Single  leg  hot  pot• Plural  component  spray

Characteristic Single Leg  (heated) Plural  Component  (heated)

Ease  of  Application Requires skilled  technician Requires skilled  technician

Cost  of  Equipment $7, 000  USD $30,000  -­‐ 50,  000  USD

Solvent  consumption Flush every  30  min  (dependant  of  the  pot  life  and  exotherm)

Flush  at  the  end  of spray

Pot  Life Min  30min No  limit

Max  Material  Viscosity 20,000 cps 80,000  cps

Max Temperature 38  oC 65 oC

Page 18: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings
Page 19: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Lower  intercoat porosity

Single coat  application  reduces therisk  of  intercoat failure

Improved  edge  retention> 75  %  

Improved  pit coverage

Improved  adhesive strength

Page 20: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Test  Method Description

ASTM  D648 Heat  Deflection Temperature

ASTM  D6137 Sulfuric Acid  Resistance of  Polymer  Linings  for  Flue  Gas  Desulfurization  Systems

ASTM  D5499 Heat  Resistance   of  Polymer Linings  for  Flue  Gas  Desulfurization  Systems

NACE  TM  0174 Laboratory  Methods  for  the  Evaluation  of  Protective  Coatings  and  Lining  Materials  on  Metallic  Substrates  in  Immersion  Service

NACE  TM  0185 Evaluation  of  Internal  Plastic  Coatings  for  Corrosion  Control  of  Tubular  Goods  by  Autoclave  Testing

ASTM  2485 Evaluating  Coating  for  High  Temperature Service

CSA  Z245.20 Hot Water  Soak  Test

Page 21: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings
Page 22: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Use  more  aggressive  wheel– H 18  (1  Kg,  1000  cycles)

• Result  must  be  less  than  100mg  to  survive  high  erosive  flue  gas  rates

Page 23: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Modified  version  of  ASTM  G76• 60  m/s  aluminum  oxide  at  a  30  mm  stand  off• Evaluate  both  90o and  30o angles

Page 24: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Atlas  Cell  Testing

Poor  wet  adhesion

Blisters   at  thin  coating

Hybrid  Material

Page 25: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

Testing Result

Auotclave at  96 hrs at  160  oC Pass

Taber  Abrasion  CS-­‐18, 1kg,  1000  cycles

<  50  mg  

Mix  Ratio 4:1    (resin:hardener)

Holiday  detectable Yes

Chemical  resistance Pass  H2SO4, HCl,  CH2Cl2 (168  hrs)

Autoclave  at  96  hrs  at  160  oC

Page 26: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

• Hybridization  is  at  the  forefront  for  advanced  high  temperature  development  work• Test  methods  must  best  simulate  the  service  environment• Heated  plural  component  spray  adds  performance  benefit• Proper  high  temperature  formulations  will  drive  longer  term  performance

Page 27: Advancements in Ceramic Coating Technology for the Power Generation Industry -  FMP Coatings

www.fmpcoatings.com

[email protected]