48
Dynamic Dispatch Waves for SameDay Delivery Mathias Klapp, Alejandro Toriello, Alan Erera School of Industrial and Systems Engineering Georgia Tech UCBerkeley ITS Friday Seminar February 20, 2015

Dynamic Dispatch Waves for Same-day Delivery

Embed Size (px)

Citation preview

Dynamic  Dispatch  Waves  for  Same-­‐Day  Delivery  

Mathias  Klapp,  Alejandro  Toriello,  Alan  Erera  

School  of  Industrial  and  Systems  Engineering  Georgia  Tech    

UC-­‐Berkeley  ITS  Friday  Seminar  February  20,  2015  

What  to  remember  

1.  Last-­‐mile  home  delivery  logis=cs  costly  due  to  poor  scale  economies,  and  same  day  delivery  adds  to  challenge  

2.   Dynamic  vehicle  dispatch  strategies  for  SDD  systems  may  provide  significant  value  over  fixed  wave  strategies  

3.  Simple  rollout  policies  produce  high  quality  dynamic  solu=ons  in  idealized  seJng    

This  talk  is  not  about…  

Last-­‐mile  home  delivery  

•  Weak  scale  economies  – Ton-­‐miles  /  operator-­‐hour  compara=vely  low  – Small  vehicles,  opera=ng  cost  inefficient  

Distribution center

Consumer delivery locations

Home  delivery  e-­‐commerce  

Home  delivery  e-­‐commerce  

Same-­‐day  home  delivery  

Same-­‐day  home  delivery  

Pick/pack/load  and  vehicle  dispatch  

•  Both  benefit  from  order  batching  – Pick  density  for  warehouse  opera=ons  – Stop  density  for  vehicle  rou=ng  opera=ons  

Pick/pack/load  and  vehicle  dispatch  

•  Both  benefit  from  order  batching  – Pick  density  for  warehouse  opera=ons  – Stop  density  for  vehicle  rou=ng  opera=ons  

Distribution center

dense = shorter travel time per delivery

Pick/pack/load  and  vehicle  dispatch  

•  Both  benefit  from  order  batching  – Pick  density  for  warehouse  opera=ons  – Stop  density  for  vehicle  rou=ng  opera=ons  

Distribution center

sparse = longer travel time per delivery

Next-­‐day  vs.  same-­‐day    

yesterday today time

orders arrive

Next-day Local Distribution System

order pick, pack, and load

vehicles for delivery dispatched

Next-­‐day  vs.  same-­‐day    

yesterday today time

orders arrive

Same-day Local Distribution System

order pick, pack, and load

vehicles for delivery dispatched

Pick/pack/load  batching  economies?  

yesterday today time

orders arrive

Same-day Local Distribution System

order pick, pack, and load

vehicles for delivery dispatched

many orders arrive after first picks must be made

Dispatch  batching  economies?  

yesterday today time

orders arrive

Same-day Local Distribution System

order pick, pack, and load

vehicles for delivery dispatched some vehicles should be dispatched before all orders are ready

Vehicle  dispatch  challenges  

•  Each  vehicle  dispatched  mul=ple  =mes  during  opera=ng  day  (10-­‐12  opera=ng  hours)  – When  to  dispatch  vehicles?  

•  Tradeoffs  between  wai=ng  to  dispatch,  dispatching  long  routes,  dispatching  short  routes  – When  to  wait  to  accumulate  stop  density?  – Which  orders  to  serve  with  each  vehicle  dispatch?  

Dynamic  Dispatch  Waves  Problem  

•  Determine  dispatch  epochs  dynamically  

•  Explore  tradeoffs  ini=ally  with  single  vehicle  and  simplified  geography  

time

wait

dispatch 1 dispatch 2 dispatch 3

Simplified  geography:  stops  on  line  

di

•  Order  loca=on    –  round-­‐trip  travel  =me  from  DC  

•  No  stop  =me  •  Dispatch    

– serves  all  ready  orders  

di

di

{j : dj di}

Order  ready  Mme  process  

di

time

Ready is picked, packed for loading (no duration)

T 0⌧i

Orders served and vehicle back to DC by time 0

Order  ready  Mme  process  

di

time

Ready orders for first dispatch of day

T 0⌧i

Order  ready  Mme  process  

di

time

Orders that come available later in operating day, and unknown when planning at time T

T 0⌧i

Dynamic  Dispatch  Waves  Problem  

•  Each  =me  vehicle  at  distribu=on  center,  decide:  – Whether  to  dispatch  vehicle,  or  wait  –  If  dispatched,  which  unserved  ready  orders  to  include  in  the  route  

•  Given  set  of  poten.al  orders  –  Round-­‐trip  dispatch  =me  –  Stochas=c  =me  (or  wave)  when  order  ready  –  Penalty  if  order  remains  unserved  

•  Operate  to  minimize  total  cost  of  all  dispatches  plus  total  unserved  order  penal=es  

N = {1, ..., n}di

⌧i�i

Dynamic  programming  formulaMon  for  DDWP  on  the  line  

•  State:  – Number  of  remaining  waves,  –  Ready  and  unserved  orders,    –  Poten=al  orders  not  yet  ready,  

•  Ac=ons:    wait  one  wave,  or  serve  –  Cost:  –  Possible  dispatch  ac=ons:  – Must  return  by  0:  

•  At  end  horizon,  pay  penal=es  for  unserved  orders  

(t, R, P )

tR

P

S ✓ R

|R|x = maxi2S di

x t

Dynamic  programming  formulaMon  for  DDWP  on  the  line  

Bellman  recursion  for  DDWP  

DeterminisMc  DDWP  on  line  •  Request  ready  =mes  known  in  advance,  but  requests  cannot  be  served  before  ready  =me  

•  Proper=es  of  op=mal  solu=on  – Dispatch  lengths    x    strictly  decreasing  – No  wai=ng  a]er  first  dispatch    

DeterminisMc  DDWP  on  line  •  Request  ready  =mes  known  in  advance,  but  requests  cannot  be  served  before  ready  =me  

•  Proper=es  of  op=mal  solu=on  – Dispatch  lengths    x    strictly  decreasing  – No  wai=ng  a]er  first  dispatch    

DeterminisMc  DDWP  on  line  •  New  DP  state:  remaining  waves  t,  length  d  of  prior  dispatch  

•  Recursion  

 

O(n2T )

Using  determinisMc  DDWP  

•  Es=ma=ng  an  a  posteriori  cost  lower  bound    – Average  cost  for  sample  of  order  realiza.on  days  – Any  dynamic  policy  for  stochas=c  DDWP  can  have  no  lower  expected  cost  

•  Building  a  priori  policy  solu=ons  to  the  stochas=c  DDWP  

A  priori  soluMon  

•  Before  first  dispatch  (i.e.,  at  wave  T),  find    complete  set  of  vehicle  dispatches:  

•  Theorem  {(xk

, t

k)}

Optimal a priori solution is solution todeterministic DDWP where each order ireplicated for each wave t 2 {T, ..., 1} withknown ready time t and penalty �i Pr(⌧i = t)

Dynamic  policies  

1.  Implement  a  priori  solu=on,  but  adjust  during  opera=ons  

–  Shorten,  delay,  and  cancel  some  dispatches  

2.  Rollout  using  a  priori  solu=ons  – Execute  first  decision  in  adjusted  a  priori  solu=on  – Build  new  a  priori  plan  any  =me  vehicle  at  distribu=on  center,  using  new  informa=on  

Experiment  1  

•  Request  ready  =me  process  – Condi=onal  arrival  likelihoods                  each  wave  

•  Request  loca=ons  and  penal=es  – Loca=on  discrete  uniform  up  to  a  maximum  – Penal=es  discrete  uniform  on  quarters  of  

•   20  random  instances  for  class  –  r  measures  =me  flexibility  

✓iT

``

✓n, `, r =

T

`

Experiment  1:  Results  Av

g G

ap to

a p

oste

riori

low

er b

ound

Experiment  1:  Results  Av

g G

ap to

a p

oste

riori

low

er b

ound

Experiment  1:  Results,  r  =  2  Av

g G

ap to

a p

oste

riori

low

er b

ound

Dynamic  policies  via  ALP  

•  Dual  LP  reformula=on  of  Bellman’s  equa=on  – massive  LP:  exponen=al  variables,  constraints  

maxERT [CT (RT , N \RT )]

C0(R,P ) X

i2R

�i

Ct(R,P ) EF t1[Ct�1(R [ F t

1 , P \ F t1)]

Ct(R,P ) d+ EF td[Ct�d(Rd [ F t

d, P \ F td)]

Dynamic  policies  via  ALP  

•  ALP  restric=on  provides  lower  bound,  and  poten=ally  useful  approxima=on  of  C  

•  Restrict  C  :  

•  “cost  of  unserved  known  requests”,  “cost  of  unserved  poten=al  requests”,  “value  of  remaining  waves”  

Ct(R,P ) ⇡X

i2R

ati +X

j2P

btj �tX

k=1

vk

Dynamic  policies  via  ALP  

•  Proposi=ons  – Using  this  restric=on  in  dual  LP,  the  ALP  lower  bound  LP  requires                                  variables  and                                      constraints  

–  (*)  For  determinis=c  problems,  the  ALP  lower  bound  is  =ght,  equal  to  op=mal  cost  

•  Hybrid  ALP-­‐A  priori  rollout  policy  – Use  a  priori  rollout  first,  then  switch  to  ALP  rollout  later  in  opera=ng  period  

O(nT ) O(n2T )

Experiment  1:  Results  Av

g G

ap to

a p

oste

riori

low

er b

ound

Experiment  2  

•  New  ready  =me  process  – p:  Likelihood  ready  by  T  – q:  Likelihood  of  no  request  – Remaining  likelihood  discrete  uniform:  

•  Request  loca=ons  and  penal=es  as  before  •  20  random  instances  

 

(n = 20, ` = 10, r = 3)

µiµi + vµi � v

Experiment  2:  Results  vs.  q  -­‐  p  Av

g G

ap to

a p

oste

riori

low

er b

ound

Experiment  2:  Results  vs.  v  Av

g G

ap to

a p

oste

riori

low

er b

ound

ObservaMons:  1  

•  Dynamic  soluMons  valuable  – Dispatching  scheme  from  A  priori-­‐rollout  approach  usually  provides  significant  savings  over  instance-­‐specific  A  priori  solu=ons  

– Schemes  with  fixed  dispatch  waves  could  be  no  befer  in  this  seJng  

time

wave I wave II wave III

ObservaMons:  1  

•  Fixed-­‐but-­‐flexible  dispatch  waves  (?)  – Fixed  planning  waves  useful  to  DC  pick/pack/load,  and  for  customer  order  management  

– Design  and  performance  of  a  fixed-­‐but-­‐flexible  dispatch  wave  system?  

time

wave I wave II wave III

ObservaMons:  2  

•  LocaMons  on  line  creates  maximum  batching  benefit  – Compounded  by  assump=on  of  no  fixed  stop  =me  required  per  delivery  

–  Incen=ve  to  wait  and  batch  may  be  too  strong  –  Inves=ga=ng  problems  with  fixed  stop  =mes  and  two-­‐dimensional  delivery  loca=ons    

ObservaMons:  2  

T 0⌧i

latest wave and dispatch duration

Other  extensions  

•  MulMple  vehicles  per  delivery  zone  – How  to  coordinate  dispatch  waves  for  two  vehicles  serving  a  single  zone?    Other  configura=ons?  

•  Customer  order  management  – Reject/not  offer  same  day  delivery  op=on  dynamically  as  orders  are  received  

What  to  remember  

1.  Last-­‐mile  home  delivery  logis=cs  costly  due  to  poor  scale  economies,  and  same  day  delivery  adds  to  challenge  

2.   Dynamic  vehicle  dispatch  strategies  for  SDD  systems  may  provide  significant  value  over  fixed  wave  strategies  

3.  Simple  rollout  policies  produce  high  quality  dynamic  solu=ons  in  idealized  seJng