36
UNIVERSIDAD CATOLICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA. MATERIA: MECANICA DE LOS FLUIDOS CONTENIDO: TURBINAS DOCENTE: INGENIERO: VINICIO ARGUETA ALUMNOS: GUILLERMO ALEXIS NÁJERA IBÁÑEZ JONHY LEONEL PEREZ LINO FREDERICK BOANERGES CALDERON GRUPO: “A” FECHA: 13/06/2014

Fluidos turbinas..documento

  • Upload
    sheva22

  • View
    294

  • Download
    1

Embed Size (px)

DESCRIPTION

un documento importante e interesante al momento de estudiar fluidos.

Citation preview

Page 1: Fluidos turbinas..documento

UNIVERSIDAD CATOLICA DE EL SALVADOR

FACULTAD DE INGENIERÍA Y ARQUITECTURA.

MATERIA:

MECANICA DE LOS FLUIDOS

CONTENIDO: TURBINAS

DOCENTE:

INGENIERO: VINICIO ARGUETA

ALUMNOS:

GUILLERMO ALEXIS NÁJERA IBÁÑEZ

JONHY LEONEL PEREZ LINO

FREDERICK BOANERGES CALDERON

GRUPO: “A”

FECHA: 13/06/2014

INDICE

PÁG.

Page 2: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

OBJETIVOS…………………………………………………………………………………..3

INTRODUCCIÓN…………………………………………………………………………..4

CONTENIDO : TURBINAS………………………………………………………...4- 26

DEFINICIÓN.

CLASIFICACIÓN

ELEMENTOS CONSTITUTIVOS

APLICACIONES

ALTURA Y ENERGÍA NETAS

CONCLUSIÓN……………………………………………………………………………..27

BIBLIOGRAFÍA…………………………………………………………………………..28

OBJETIVOS

Objetivo genera:

Que los estudiantes de ingeniería adquieran los conocimientos básicos del tema de

turbinas, su definición, clasificación, composición y aplicaciones que tienen estas

turbomáquinas en la actualidad.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 2

Page 3: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Objetivo específico:

Comprender el concepto de turbina a nivel general.

Reconer las diferentes clasificaciones que tienen las turbinas en base a su

utilidad.

Conocer las partes principales de una turbina.

Identificar las aplicaciones que tienen las turbinas en la actualidad.

Entender que es la altura y energía neta de una turbina.

Realizar una investigación detallada del tema de turbinas.

INTRODUCCION

Las turbinas son máquinas que desarrollan potencia en el eje como resultado de la

variación de la cantidad de movimiento del fluido que pasa a través de ellas. Dicho

fluido puede ser un gas, vapor o líquido.

En la industria de generación de electricidad es muy frecuente el uso de vapor

generado en calderas a alta presión que utilizan combustibles sólidos o nucleares

para mover los alternadores accionados por turbinas de vapor.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 3

Page 4: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Existen numerosos tipos de turbinas, desde la más elemental utilizada en el buril

de un dentista, hasta las grandes turbinas multiexpansión empleadas en las

centrales energéticas, que pueden llegar a desarrollar hasta 1000 MW.

Un suministro de energía fiable, ecológico y al menor coste posible es esencial. Las

turbinas han evolucionado mucho desde que surgieron como unas simples ruedas,

después empezaron a conectarse a otros aparatos para utilizarse con máquinas.

En la actualidad es elemental para el ingeniero, conocer profundamente el

funcionamiento y los conceptos que rigen los principios de las turbinas de gas. Esto

es debido a que el ingeniero probablemente se encontrara en su trabajo con el uso

o mantenimiento de este tipo de equipos. Por esto, es de vital importancia conocer

los conceptos básicos de estas máquinas.

En el presente trabajo se hará un breve recuento de los conceptos básicos, tipos de

turbinas, los ciclos de funcionamiento y las aplicaciones de las mismas.

CONTENIDO

CONCEPTOS GENERALES DE TURBINAS

Turbina  nombre genérico que se da a la mayoría de las turbomáquinas motoras. Éstas son máquinas de fluido, a través de las cuales pasa un fluido en forma continua y éste le entrega su energía a través de un rodete con paletas o álabes.

Es un motor rotativo que convierte en energía mecánica la energía de una corriente de agua, vapor de agua o gas. El elemento básico de la turbina es la rueda o rotor, que cuenta con palas, hélices, cuchillas o cubos colocados alrededor de su

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 4

Page 5: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

circunferencia, de tal forma que el fluido en movimiento produce una fuerza tangencial que impulsa la rueda y la hace girar. Esta energía mecánica se transfiere a través de un eje para proporcionar el movimiento de una máquina, un compresor, un generador eléctrico o una hélice.

Las turbinas constan de una o dos ruedas con paletas, denominadas rotor y estator, siendo la primera la que, impulsada por el fluido, arrastra el eje en el que se obtiene el movimiento de rotación.

El término turbina suele aplicarse también, por ser el componente principal, al conjunto de varias turbinas conectadas a un generador para la obtención de energía eléctrica.

Los tipos de turbinas que existen son:

A. Turbinas hidráulicas

B. Turbinas térmicas

C. Turbinas eólicas

D. Turbina submarina

Se especificaran cada una de las turbinas mencionadas.

CLASIFICACION

A. TURBINAS HIDRAULICAS

Una turbina hidráulica es una turbo máquina motora hidráulica, que aprovecha la energía de un fluido que pasa a través de ella para producir un movimiento de rotación que, transferido mediante un eje, mueve directamente una máquina o bien un generador que transforma la energía mecánica en eléctrica, así son el órgano fundamental de una central hidroeléctrica.

Por ser  turbomáquinas  siguen la misma clasificación de estas, y pertenecen, obviamente, al subgrupo de las turbomáquinas hidráulicas y al subgrupo de las turbomáquinas motoras. En el lenguaje común de las turbinas hidráulicas se suele hablar en función de las siguientes clasificaciones:

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 5

Page 6: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

De acuerdo al cambio de presión en el rodete o al grado de reacción

I. Turbinas de acción: Son aquellas en las que el fluido de trabajo no sufre un cambio de presión importante en su paso a través de rodete.

II. Turbinas de reacción: Son aquellas en las que el fluido de trabajo si sufre un cambio de presión importante en su paso a través de rodete.

Para clasificar a una turbina dentro de esta categoría se requiere calcular el grado de reacción de la misma.

De acuerdo al diseño del rodete

Esta clasificación es la más determinista, ya que entre las distintas de cada género las diferencias sólo pueden ser de tamaño, ángulo de los álabes o cangilones, o de otras partes de la turbomáquinas distinta al rodete.

Los tipos más importantes son:

A. Turbina Pelton

B. Turbina Kaplan y Turbina Hélice.

C. Turbina Francis.

A continuación se detallara cada una de estas turbinas con su definición, sus partes, funcionamiento, entre otros. Para un mejor entendimiento.

TURBINAS DE ACCIÓN

En las turbinas activas el agua no es entregada alrededor del rodete sino en chorros independientes; utilizan únicamente la velocidad del flujo de agua para girar.

Turbina Pelton

Las turbinas Pelton son las turbinas de acción más utilizadas y son recomendadas en centrales que dispongan grandes alturas de trabajo y bajo caudal. Este tipo de turbina permite una gran flexibilidad de funcionamiento, al ser capaz de turbinar hasta el 10% de su caudal nominal con rendimientos óptimos.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 6

Page 7: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Las posibilidades de montaje son múltiples, siendo posible su instalación con eje horizontal o vertical, con uno o varios inyectores y con uno o dos rodetes.

En la siguiente ilustración se describen los principales componentes de una turbina Pelton.

COMPONENTES1. Tubería de distribución 2. Inyector 3. Rodete 4. Carcasa 5. Eje de turbina 6. Generador

El distribuidor de la turbina Pelton: Compuesto por la cámara de distribución propiamente dicha y los inyectores, que a su vez se conforman de servomotores, tobera, válvulas de agujas, deflectores y dispositivos mecánicos para su accionamiento.

El rodete de la turbina Pelton. Es la turbina propiamente dicha, la parte donde se transforma la energía hidráulica del agua por la acción de su fuerza dinámica. Se compone de la rueda motriz que se acopla rígidamente al eje, y de los cangilones, álabes palas o cucharas.

TURBINAS DE REACCIÓN

En las turbinas reactivas la cámara de conducción generalmente tiene forma de un espiral y proporciona una entrega uniforme del agua al distribuidor a lo largo de la circunferencia. Este tipo de turbina aprovecha la energía estática y dinámica del agua; emplean tanto la presión como la velocidad el agua.

Dentro de este tipo se encuentran las turbinas

Turbina Kaplan Las turbinas Kaplan se adaptan muy bien en centrales caracterizadas por pequeños saltos y caudales altos. La gama de funcionamiento en muy amplia siendo capaz de turbinar hasta el 25% del caudal nominal de la turbina.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 7

Page 8: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

En la siguiente ilustración se describen los principales componentes de una turbina Kaplan tipo S.

COMPONENTES:

1. Distribuidor y palas del distribuidor 2. Eje turbina 3. Rodete 4. Generador

Turbina Hélice: son exactamente iguales a las turbinas Kaplan, pero a diferencia

de estas, no son capaces de variar el ángulo de sus palas.

Turbina Francis

Es una turbina de reacción de flujo interno, transforma energía hidráulica en energía mecánica, combinando conceptos tanto de flujo radial como de flujo axial.

Es una turbina muy utilizada debido a las grandes potencias unitarias que logra en función de su tamaño. Su rango de funcionamiento es aceptable, pudiendo turbinar a partir del 40% del caudal nominal de la turbina.

En la siguiente ilustración se describen los principales componentes de una turbina Francis.

COMPONENTES:

1. Cámara espiral 2. Alabe móvil 3. Rodete 4. Codo y tubo de descarga 5. Eje de descarga 6. Generador

Definición de algunas partes:

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 8

Page 9: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

a) Caracol o cámara espiral: Constituye el ducto alimentador de agua al rodete, es de sección circular y diámetro decreciente. Circunda el rodete y le entrega el agua requerida para la operación. El agua pasa del caracol al distribuidor guiada por unas paletas direccionales fijas a la carcasa.

b) El rodete: Es la rueda motriz propiamente y posee álabes que están adosados a un disco perpendicular al eje de la máquina. En el rodete se distingue la corona, la banda y los álabes curvados.

c) Tubo de aspiración: También denominado difusor o tubo de desfogue, consiste en una conducción en forma de sifón que une la turbina con el canal de descarga. Tiene como función recuperar el máximo de energía cinética del agua a la salida del rodete.

CORTE TRANSVERSAL TURBINA FRANCIS VERTICAL

COMPONENTES

1. Eje2. dispositivo sobrevelc3. monorriel de pozo4. Soporte coj. De empuje5. servomotor6. anillo de regulación7. cojinete de guía8. tapa superior9. distribuidor 10. pre distribuidor11. cámara espiral12. anillo espiral13. Rodete francis14. cono rodete francis15. cono tubo de aspiración

ANALIZANDO TURBINAS DE ACCIÓN VS TURBINAS DE REACCIÓN

En la siguiente ilustración se muestra un paralelo entre el funcionamiento de las turbinas de acción y las de reacción.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 9

Page 10: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

APLICACIONES

TURBINA PELTON

Existen turbinas Pelton de muy diversos tamaños. Hay turbinas de varias toneladas montadas en vertical sobre cojinetes hidráulicos en las centrales

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 10

Page 11: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

hidroeléctricas. Las turbinas Pelton más pequeñas, solo de unos pocos centímetros, se usan en equipamientos domésticos.

En general, a medida que la altura de la caída de agua aumenta, se necesita menor caudal de agua para generar la misma potencia. La energía es la fuerza por la distancia, y, por lo tanto, una presión más alta puede generar la misma fuerza con menor caudal.

TURBINA FRANCIS

Se utilizan para producción de electricidad. Las grandes turbinas Francis se diseñan de forma individual para cada aprovechamiento hidroeléctrico, a efectos de lograr el máximo rendimiento posible, habitualmente más del 90%. Son muy costosas de diseñar, fabricar e instalar, pero pueden funcionar durante décadas.

También pueden utilizarse para el bombeo y almacenamiento hidroeléctrico, utilizando dos embalses, uno a cota superior y otro inferior (contraembalse); el embalse superior se llena mediante la turbina (en este caso funcionando como bomba) durante los períodos de baja demanda eléctrica, y luego se usa como turbina para generar energía durante los períodos de alta demanda eléctrica.

Se fabrican micro turbinas Francis baratas para la producción individual de energía para saltos menores de 52 metros.

Central Hidroeléctrica Cerrón Grande

Está ubicada a 78 kilómetros al norte de San Salvador, sobre el río Lempa, entre los municipios de Potonico, (Chalatenango); Jutiapa (Cabañas), está formada por una presa de 90 metros de altura, con una longitud de 800 metros, un vertedero de concreto de 4 compuertas y una casa de máquinas superficial.   

La primera unidad entró en operación en febrero de 1976 y la segunda en febrero de 1977. Cada unidad tenía una capacidad de 67.5 MW.

Las principales características de la central son las siguientes:

UNIDADES

Turbinas: Allis Chalmers tipo Francis de eje vertical

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 11

Page 12: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Generador: Brown Boveri and Co., Suiza.

Capacidad nominal: 170 MW

Número de unidades: 2 unidades de 85 MW c/u.

EMBALSE

Área: 135km2

Volumen de agua embalsado: 2,180 millones de m3

Volumen de agua útil 1,430 millones de m3

Caudal medio anual: 154 m3/seg.

 OPERACIÓN

Caudal máximo turbinable 130 m3/seg (a 243 m.s.n.m.)

Generación media anual 488 GWh.

Tipo de funcionamiento del embalse De regulación

Operaciones de la central: Base y punta.

Turbinas La planta hidroeléctrica fue inicialmente equipado con 2 turbinas Francis con una capacidad de 2 x 67.5 MW.Se llevo a cabo una revisión de las instalaciones y las turbinas fueron reemplazados por 2 unidades de  85  MW,  con  una  capacidad  instalada  de  170  MW  y  una producción anual de 488 GWh de energía eléctrica

Turbina Francis Central Hidroeléctrica Cerrón Grande

TURBINA KAPLAN

Central Hidroeléctrica Guajoyo

Está ubicada al noroeste de San Salvador, en el municipio de Metapán, departamento de Santa Ana. La central fue diseñada para albergar una unidad de

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 12

Page 13: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

15 MW, que utiliza el agua almacenada en el lago de Güija, y entró en operación en diciembre de 1963.

Consiste en una presa de concreto de 33 metros de altura, un dique de control de tierra de 12.5 metros de altura, un vertedero de fondo con una compuerta radial y un aliviadero de 4 bahías controlados con mamparos, canal de acceso, bocatoma de concreto, túnel de concreto de 6.25 metros de diámetro y 300 metros de longitud y una casa de máquinas de concreto semi- subterránea.

Las principales características de la central son las siguientes:

UNIDADES

Turbina: Toshiba tipo Kaplan de eje vertical.

Generador: Toshiba, Japón.

Capacidad nominal: 19.7 MW

Número de unidades: 1

 

EMBALSE

Área: 26.3 km2

Volumen de agua embalsado: 645 millones de m3

Volumen de agua útil 490 millones de m3

Caudal medio anual: 26.3 m3/Seg

OPERACIÓN:

Caudal máximo turbinable 42 m3/seg (a 430 m.s.n.m.).

Generación media anual 64.2 GWh.

Tipo de funcionamiento del embalse De regulación.

Operaciones de la central: Punta

B. TURBINAS TÉRMICAS

Es el nombre genérico que se da a la mayoría de las turbomáquinas motoras. Éstas son máquinas de fluido, a través de las cuales pasa un fluido en forma continua y éste le entrega su energía a través de un rodete con paletas o álabes.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 13

Page 14: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Es un motor rotativo que convierte en energía mecánica la energía de una corriente de agua, vapor de agua o gas. El elemento básico de la turbina es la rueda o rotor, que cuenta con palas, hélices, cuchillas o cubos colocados alrededor de su circunferencia, de tal forma que el fluido en movimiento produce una fuerza tangencial que impulsa la rueda y la hace girar

Al igual que las hidráulicas, se pueden diferenciar en turbinas de acción y de

reacción:

I. Turbinas de acción: En este tipo de turbinas el salto entálpico ocurre sólo en

el estator, dándose la transferencia de energía sólo por acción del cambio de

velocidad del fluido.

II. Turbinas de reacción: El salto entálpico se realiza tanto en el rodete como

en el estator, o posiblemente, sólo en rotor.

Por otro lado, se clasifican según el cambio de presión que sufren:

A. De alta presión

B. De presión media

C. De baja presión

Y la clasificación más usual:

TURBINA A VAPOR

Es una turbo máquina que transforma la energía de un flujo de vapor en energía

mecánica. Este vapor se genera en una caldera, de la que sale en unas condiciones

de elevada temperatura y presión. En la turbina se transforma la energía interna

del vapor en energía mecánica que, típicamente, es aprovechada por un generador

para producir electricidad.

Los elementos principales de una turbina de vapor son:

a. Rotor. Es el elemento móvil del sistema. La energía desprendida por el vapor en

la turbina se convierte en energía mecánica en este elemento.

b. Estator. El estator está constituido por la propia carcasa de la turbina. Al igual

que el rotor, el estator está formado por una serie de coronas de alabes,

correspondiendo cada una a una etapa o escalonamiento de la turbina.

c. Toberas. El vapor es alimentado a la turbina a través de estos elementos. Su

labor es conseguir una correcta distribución del vapor entrante/saliente

al/desde el interior de la turbina.

Turbina a   vapor

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 14

Page 15: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Por su mecanismo de funcionamiento se clasifican:

Turbina Centrípetas:

Las turbinas radiales o mixtas presentan la siguiente evolución: En el estator se

produce una expansión aumentando la velocidad, dismuyendo la entalpía.

En el rotor se produce un aumento de la velocidad relativa debida a la expansión

donde además se produce una caída de presión.

R>0 (frecuentemente próximo a 0,5)

Turbina axial de acción con presión constante en el rotor.

La presión disminuye completamente en el estator mientras que se mantiene

constante en el rotor donde la velocidad del fluido no varía apenas salvo una leva

disminución por la fricción.

R≤0 (Negativo ligeramente debido a la disminución de entalpía en el rotor por la

fricción).

Turbina axial de acción con entalpía constante en rotor.

La entalpía es constante en el rotor y se produce una expansión en el estator con

aumento de la velocidad del gas. En el rotor, sin embargo, la velocidad relativa es

constante. Se produce una pequeña caída de presión que no provoca un aumento

de la velocidad debido a que es debida a la fricción. R=0

TURBINA DE GAS

Una turbina de gas, es una turbomáquina motora, cuyo fluido de trabajo es un gas.

Como la compresibilidad de los gases no puede ser despreciada, las turbinas a gas

son turbomáquinas térmicas.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 15

Page 16: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Como funciona:Se toma aire atmosférico a través de la admisión del compresor desde donde  se envía aire comprimido a la cámara de combustión en la cual el combustible entra con un caudal constante y se mantiene en llama continua. La ignición inicial se obtiene generalmente por medio de una chispa (Dispositivo de puesta en marcha). El aire, calentado en la cámara de combustión o combustor, se expande a través de toberas o paletas fijas y adquiere una elevada velocidad. Parte de la energía cinética de la corriente de aire es cedida a los álabes o cangilones de la turbina. Una fracción de esta energía se emplea para accionar el compresor y el resto para

producir trabajo.

En la operación de las turbinas de gas se presentan varias limitaciones de índole práctica, las cuales determinan gran parte de la actuación de esta clase de máquinas. Entre estas limitaciones merecen citarse la temperatura y velocidad de los álabes, el rendimiento del compresor, el rendimiento de la turbina y la transferencia de calor (en ciclos con regeneración).

Las turbinas de gas pueden dividirse en seis grandes partes principales:

1. Compresor2. Cámara de combustión3. Turbina de expansión4. Carcasa

GT-300 PLACA DE DATOSGeneración de energíaCombustible:Frecuencia:Eficiencia eléctrica:Consumo específico:Velocidad de la turbina:Relación de compresión:Caudal de gases de escape:Temperatura gases escape:

7,90 MW(e)Gas natural50/60Hz31,2 %11.532 kJ/kWh (10.930 Btu/kWh)14.010 rpm13,7:129,8 kg / s (65,6lb/s)537°C (999°F)

APLICACIONES

Aviación militar: Para helicópteros, aviones de combate o caza bombarderos, aviones de despegue vertical. En este caso se buscan turbinas con temperaturas de admisión más elevada para lograr más altas velocidades y despegues verticales

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 16

Page 17: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Aviación comercial: Se utilizan aviones de turbina de chorro (turbo-jet) y de turbina de hélice (turbo-fan). En las aerolíneas de carga se emplean turbinas de gran potencia.

Tuberías para transmisión de gas. Es de las industrias que más utilizan turbinas de gas. Las turbinas de gas han sido instaladas para impulsar compresores en medidas superiores  a 22500 KW (300 HP). Esta es una aplicación excelente ya que el gas natural es un combustible ideal y se requiere una gran cantidad de fuerza motriz.

Transporte: En barcos, la alta potencia específica de las turbinas de gas permite realizar diseños de altas velocidades. Esto es muy útil para barcos tipo containers, botes moto-torpedo y grandes barcos de guerra.

Un barco de vapor, también llamado de manera mucho menos frecuente piróscafo,1 es un buque propulsado por máquinas de vapor, actualmente en desuso, o por turbinas de vapor. Consta elementalmente de una caldera de vapor, de una turbina de vapor o máquina de vapor y de un condensador refrigerado por agua. La transmisión se consigue con un cigüeñal en las máquinas de vapor o con una caja reductora en el caso de usar turbinas.

Central geotérmica

El vapor producido por líquidos calientes naturales en sistemas geotérmicos es una alternativa al que se obtiene en plantas de energía por quemado de materia fósil, por fisión nuclear o por otros medios. Las perforaciones modernas en los sistemas geotérmicos alcanzan reservas de agua y de vapor, calentados por magma mucho más profundo, que se encuentran hasta los 3.000 m bajo el nivel del mar. El vapor se purifica en la boca del pozo antes de ser transportado en tubos grandes y aislados hasta las turbinas. La energía térmica puede obtenerse también a partir de géiseres y de grietas.

C. TURBINAS EOLICAS

Una turbina eólica o turbina de viento es una turbina accionada por la energía eólica. Se trata de una turbomáquina motora que intercambia cantidad de movimiento con el viento, haciendo girar un rotor. La energía mecánica del eje del rotor puede ser aprovechada para diversas aplicaciones como moler, en el caso de

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 17

Page 18: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

los molinos de viento; bombear agua, en el caso de las aerobombas; o para la generación de energía eléctrica, en los aerogeneradores.

Las turbinas eólicas se clasifican, según la orientación del eje del rotor, en verticales y horizontales.

TURBINAS DE EJE VERTICAL

Savonius

Las turbinas Savonius son un tipo de turbinas de eje vertical usadas para convertir el poder del viento en torsión sobre un eje rotatorio. Fueron inventadas por el ingeniero finlandés Sigurd J. Savonius en 1922. Puede arrancar con poco viento, siendo muy sencilla su fabricación; tiene una velocidad de giro pequeña y su rendimiento es relativamente bajo.

Darrieus

Debe su nombre al ingeniero francés Georges Darrieus, quien patentó el diseño en 1931. Requiere vientos de 4 a 5 m/s, manteniendo grandes velocidades de giro y un buen rendimiento.

Ventajas de las turbinas verticales

1. No se necesita una torre de estructura poderosa.2. Pueden ser ubicadas cerca del suelo, haciendo fácil el mantenimiento de las

partes.3. Necesitan una menor velocidad del viento para empezar a girar.4. Son menos propensas a romperse con vientos fuertes.

Desventajas de las turbinas verticales

1. La mayoría de las turbinas verticales producen energía al 50% de la eficiencia de las turbinas horizontales.

2. No toman ventaja de los vientos fuertes de mayor altura.

TURBINAS DE EJE HORIZONTAL

Molino de viento

Los molinos de viento son estructuras bajas, generalmente de cuatro aspas, que se construyeron en Europa a partir del siglo XII. Se encuentran por partes aunque

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 18

Page 19: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

muy especialmente en España, donde las corrientes de los ríos no eran tan importantes como en otros países europeos.

Aerogenerador

Las turbinas eólicas modernas, conocidas también como aerogeneradores tienen su origen en Dinamarca en la década de 1980. Hoy en día la industria eólica utiliza generadores con rotores de hasta 126 metros de diámetro fabricados con alta tecnología.

Son usadas en parques eólicos para la producción comercial de electricidad. La gran mayoría tiene tres palas, están pintadas de un tono claro, tienen una eficiencia alta y están controladas por computadora.

Las turbinas eólicas modernas o aerogeneradores tienen una serie de componentes:

rotor: Contiene las aspas o palas Góndola: Es una especie de caja que se

conecta al rotor y dentro de ella está la caja de engranes y generador.

Caja de engranes: se encarga de multiplicar la rotación del rotor para que el generador reciba el número de revoluciones por minuto suficientes para poder transformar energía eléctrica en eólica.

Generador eléctrico: contiene una serie de imanes que al estar rotando generarán energía eléctrica.

Torre del aerogenerador: estructura de soporte, sostiene a la góndola y al rotor.

APLICACIONES

El mercado de las turbinas eólicas se puede clasificar según la finalidad que se le dé a esta tecnología; este tipo de proyectos son en común para aplicaciones en donde no se trabaje con conexión a la red (sin embargo el gran potencial en el mercado para estos proyectos, es con conexión a la red.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 19

Page 20: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

TURBINAS EOLICAS EN NICARAGUA

La inversión propuesta en el parque eólico consiste en la instalación de 22 turbinas de viento de 1,8 MW de capacidad cada una de la marca Vestas V90, que resultan en una capacidad total de generación de 39,6 MW por año. El proyecto estará ubicado en el sudoeste de Nicaragua, cerca del pueblo de Rivas. El área del parque estará interconectada por una red de caminos de acceso. La energía será entregada en la subestación de Amayo a través de una línea de transmisión de 13 kilómetros.

El objetivo principal del parque eólico La Fe / San Martín es proveer energía eléctrica a costos razonables al sistema eléctrico de Nicaragua a través de una fuente limpia y renovable de energía, el viento. La generación de electricidad neta esperada del parque será 138 GWh por año a 40% de capacidad de planta. El proyecto califica para ser registrado como un proyecto CDM.

Parque eólico en Nicaragua

D. TURBINA SUBMARINA

Una Turbina submarina es un dispositivo mecánico que convierte la energía de las corrientes submarinas en energía eléctrica. Consiste en aprovechar la energía cinética de las corrientes submarinas, fijando al fondo submarino turbinas montadas sobre torres prefabricadas para que puedan rotar en busca de las corrientes submarinas. Ya que la velocidad de estas corrientes varía a lo largo de un año, se han de ubicar en los lugares más propicios en donde la velocidad de las

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 20

Page 21: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

corrientes varían entre 3 km/h y 10 km/h para implantar centrales turbínicas preferentemente en profundidades lo más someras posibles y que no dañen ningún ecosistema submarino. Las turbinas tendrían una malla de protección que impediría la absorción de animales acuáticos.

CLASIFICACIÓN DE LOS CONVERSORES DE ENERGÍA DE LAS CORRIENTES MARINAS EN ENERGÍA ELÉCTRICA

Las corrientes marinas debido a las mareas generan electricidad empleando el flujo de agua creado por las corrientes al subir o bajar la marea y en algunos casos esta corriente es acelerada debido a la topografía del terreno costero o del fondo. Gracias a toda la información de los desarrollos tecnológicos en el sector eólico se ha podido dar un paso más en la industria adentrándonos en el sector de las corrientes marinas, puesto que, se rigen por el mismo principio físico de conversión de la energía, se transforma la energía cinética de un fluido (corriente marina o corriente de aire) en energía eléctrica mediante artificios mecánicos de conversión (rotores eólicos o rotores submarinos). En muchos casos a simple vista se ven el gran parecido que tienen ambos rotores. A continuación se describirán varios dispositivos que en la actualidad se están investigando. Antes de adentrarnos en los prototipos existentes deberemos de hacer una pequeña clasificación de los sistemas, tanto de la manera de incidencia de la corriente como del sistema en sí mismo.

Turbinas de eje horizontal Este sistema extrae la energía de las corrientes de una manera muy similar al de los aerogeneradores, por el flujo horizontal del fluido, agua en el caso de las turbinas sumergidas y aire en el caso de los aerogeneradores. El flujo del agua hace girar el rotor generando una sustentación debido al flujo alrededor de las palas, este movimiento rotacional es usado para generar electricidad. Estos sistemas se pueden albergar en carcasas para acelerar el fluido que atraviesa el rotor para incrementar la energía extraída.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 21

Page 22: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Turbinas de eje vertical Este tipo de turbinas extraen la energía de forma similar a las de eje horizontal, pero su eje de rotación está colocado de forma que el flujo de agua incide de forma perpendicular al sentido de la corriente marina. Algunas turbinas de eje vertical se conciben para que trabajen bajo el principio de arrastre y sustentación de los perfiles aerodinámicos.

TIPOS DE TURBINAS

SEAGEN Este tipo de turbina está desarrollada por Marine Current Turbine, es una turbina de eje horizontal, con dos rotores por sistema sujetos a un pilote central. Esta turbina se encuentra en un estado de segunda fase de sus componentes, proporcionando en la actualidad una potencia de 1,2 MW.

PARTES

El SeaGen está compuesto por dos rotores de eje horizontal con un diámetro de 16m cada uno, cada rotor está acompañado de su caja de engranajes y su generador. La salida del generador va acompañada de un rectificador, a un convertidor y a un transformador final para así poder enlazar con la red de distribución. Cada rotor es independiente del otro para poder tener un amplio abanico de operatividad. Los rotores tienen un control total de las palas para ajustar su borde de ataque en función de la corriente y de la energía que queremos extraer, y así poder obtener energía tanto en la subida de la marea como en la bajada, al poseer el sistema de palas orientables total está desprovisto de un mecanismo que hace rotar el conjunto global del sistema para su orientación. El sistema al poseer el pilote central, puede elevarse el conjunto de las turbinas por encima del nivel del mar mediante un mecanismo de elevación y así poder ser reparado o efectuar las labores de mantenimiento

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 22

Page 23: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

AR1000

Esta turbina es de eje horizontal desarrollada por Atlantis Resources Corporation con una potencia de hasta un 1MW.

PARTES

El AR1000 es una turbina de eje horizontal de 3 palas sin mecanismo para la orientación de las palas y con un sistema de viraje del artefacto para orientarlo en función de la dirección del flujo de la corriente. Posee un generador magnético permanente. La energía extraída es evacuada mediante cables de hasta 3,8kV a una subestación en tierra. El AR1000 está diseñado para obtener la potencia nominal con velocidades de flujo de 2,65m/s. Atlantis aboga por un sistema de instalación lo más simple posible para evitar potenciales puntos de fallo, por eso ha ideado un sistema de anclaje al lecho marino que consiste en que la estructura del fondo se instala primero y posteriormente se ancla la turbina a esta estructura con un sistema simple de hembra/macho con el fin de agilizar la instalación o la posterior sustitución de la turbina.

APLICACIONES

GENERADORAS DE ENERGIAS RENOVABLES

Una turbina de 30 metros anclada al suelo marino, en las profundidades de las costas escocesas, es una muestra de que las granjas de corrientes marinas están 'a un giro' de ser una fuente de energía renovable.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 23

Page 24: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

La empresa Scotish Power terminó las pruebas preliminares de su gigantesca turbina submarina en las costas con rápidas corrientes a las afueras de las Islas Orkney. La empresa descubrió que la turbina producía un megawatt de electricidad, suficiente para darle energía a 500 casas y negocios.

Hay que señalar que las turbinas submarinas no generan ningún tipo de contaminación visible o audible por encima de la superficie. En todo caso, habría que evaluar medioambientalmente las repercusiones y el impacto para la fauna marina “local”, especialmente, en el caso de equipos posicionados en el fondo por medio de estructuras fijas.

ALTURA NETA Y ENERGÍA NETA

ALTURA NETA

Es importante determinar en qué sección comienza la máquina (sección E) y en que sección termina (sección S). Sin esta determinación las dos expresiones de altura neta que vamos a dar a continuación resultan indefinidas.

Según normas internacionales se tiene:

SECCIÓN E.- En todas las turbinas la sección de entrada se encuentra inmediatamente detrás de la válvula de admisión (compuerta; de mariposa o de rodillo, etc.).

SECCIÓN S.- La sección de salida se encuentra:

En todas las turbinas de reacción (Francis, Deriaz, Helice y Kaplan) en la sección de salida del tubo de aspiración.

En todas las turbinas de acción (Pelton) en el punto de tangencia del eje del chorro con un círculo cuyo centro, es el centro del rodete.

Primera expresión de la altura neta

Altura Neta es la diferencia de alturas totales entre la entrada y la salida de la turbina. Esta diferencia es el incremento de la altura absorbida por la turbina.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 24

Page 25: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Segunda expresión de la altura neta

Definamos  la sección A: como el nivel superior del salto, ósea cota máxima del salto explotado o cota del nivel superior del embalse, y la sección Z: como el nivel inferior de aguas abajo en el canal de salida.

: Pérdidas exteriores a la turbina, incluye tanto perdidas antes de la turbina como perdidas después de la turbina

ENERGIA NETA

La energía neta es la que queda en un proceso de obtención de energía después de gastar una cierta cantidad de energía en obtener la energía que al final queda útil y a disposición de la sociedad para su consumo. El concepto es claro, la realidad es que suele ser difícil de medir con una cierta precisión. A continuación determinaremos la energía neta.

Primera expresión de la energía neta

La energía neta es igual al decremento de la energía de presión que experimenta el fluido en la turbina, más el decremento de la energía geodésica, más el decremento de la energía dinámica.

Segunda expresión de la energía neta

La energía neta: es la energía bruta menos la energía perdida antes de la turbina, menos la energía perdida después de la turbina.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 25

Page 26: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

Así se pueden obtener de una manera fácil las alturas y energías netas de las

turbinas por medio de las ecuaciones presentadas.

Altura de tipo de turbina

Como resumen se presentan las ventajas de cada tipo de turbina y su altura.

TURBINAACCION

INVENTOR Y AÑO DE PATENTE

Ns (RPM,HP,m) CAUDAL (m3/s) ALTURA (m)

PELTON Lester Alan Pelton (EEUU) 1880

1 Ch:302 Ch: 30-504 Ch: 30-506 Ch: 50-70

0.05-50 30-1800

TURBINA REACCION

INVENTOR Y AÑO DE

PATENTENs

CAUDAL(m3/s)

ALTURA(m)

POTENCIA(Kw)

Nmax. %

KAPLANY

HELICE

V. Kaplan(Australia) 1912 300-800 1000 5-80 2-200000 93

FRANCISJames Francis

(G.Bretaña) 1848 L: 60-150N: 150-250 1-500 30-750 2-750000 92-94

SIMBOLOGIANs: Velocidad específica L: Lenta Ch: Número de toberas

N: Normal R: Rápida Nmax: Eficiencia máxima

CONCLUSION

Mediante esta investigación acerca de todo lo relacionado a las turbinas, hemos

aprendido muchas cosas acerca de ellas, desde cómo están compuestas, su

funcionamiento, distintos tipos de turbinas y sus aplicaciones.

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 26

Page 27: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

La turbina generalmente consiste en una turbomáquina que produce energía

mecánica a partir del paso de un fluido. Estas turbo-maquinas pueden dividirse en

dos grandes grupos: las turbinas de acción y las turbinas de reacción que en el

reporte se detallaron básicamente.

También podemos decir que las turbinas están compuestas por dos partes

principales: el rotor y el estator. El rotor está formado por ruedas de alabes unidas

al eje y que constituye la parte móvil de la turbina; y el estator también está

formado por alabes, pero no unidos al eje sino a la carcasa de la turbina.

Se puede decir que el uso de ellas tiene un margen muy amplio de tamaños y

potencias, ya que se la puede utilizar desde maquinas con baja potencia (bombas,

compresores), hasta las que se utilizan en las centrales energéticas, que pueden

llegar a desarrollar hasta 1000 MW.

En conclusión, cada estudiante obtuvo los conocimientos básicos del tema de

turbinas y se alcanzaron los objetivos propuestos antes de la investigación.

BIBLIOGRAFIALIBROS

I. TEMA: CAPÍTULO 14 MÁQUINAS HIDRÁULICAS

Libro: Mecánica de Fluidos e Hidráulica Schaum

14.3 turbinas

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 27

Page 28: Fluidos turbinas..documento

MECANICA DE LOS FLUIDOS

INTERNETI. TEMA: TURBINAS HIDRAULICAS

http://aulaweb.upes.edu.sv/claroline/backends/download.php?url=L0NPTkNFVE9TX0dFTkVSQUxFU19ERV9UVVJCSU5BUy5wZGY%3D&cidReset=true&cidReq=GTE023Visitada: 03/06/2014

II. TEMA: CONCEPTOShttp://es.wikipedia.org/wiki/Turbina#Turbina_submarinaVisitada: 03/06/2014

III. TEMA: ENERGÍA NETA Y ALTURAhttp://www.geocities.ws/evilchezperez/pag6.htmlVisitada: 04/06/2014

IV. TEMA: APLIACCIONES TRUBINAS EOLICAShttp://www.centralamericadata.com/es/article/home/Nicaragua_50_millones_de_la_CII_para_proyecto_eolicoVisitada: 06/06/2014

V. TEMA ; TURBINAS SUBMARINAShttp://repositorio.bib.upct.es/dspace/bitstream/10317/3065/1/tfm168.pdfVisitada: 07/06/2014

VI. TEMA: TURBINAS MARINAShttp://ainaval.wordpress.com/2012/02/07/la-energia-de-las-mareas-turbinas-submarinas-de-1-mwe/Visitada: 08/06/2014

UNIVERSIDAD CATOLICA DE EL SALVADOR Página 28