Masuda 1993

  • View
    135

  • Download
    0

Embed Size (px)

Transcript

  • Netsu Bussei 7 k4l (1993) 227/233

    (Al2O3, SiO2, TiO2 )

    , ,*1 ,*2

    980 2-1-1

    , ,

    . Al2O3, SiO2 TiO2 ,

    , .

    , , , .

    , .

    , ().

    .

    Al2O3SiO2

    AEROSIL 200CFAluminum Oxide C, TiO2

    STT-65C .

    1.

    () ,

    ,

    [1],

    [2, 3].

    ,

    [4, 5],

    [6]. ,

    , -Fe2O3 TiO2

    ,

    [7].

    (1100nm)

    ,

    ,

    , [8, 9].

    , ,

    12

    .

    ,

    . , 10nm

    ,

    ,

    ,

    .

    Al2O3 3

    , ( ) , [7]

    ,

    .

    .

    2.

    2.1

    ,

    (1) () ,

    (2)

    ,

    .

    ,

    7-A12O3, SiO2 TiO2 ( ) 3

    *3.

    [10-12] Table 1 . PZC (point

    of zero charge) . -A12O3

    ,

    , TiO2 . SiO2

    .

    Fig. 1 , (a) -Al2O3

    1 , (b) SiO2 , (c)

    TiO2 1 .

    2.2 -

    ,

    ,

    227

  • () .

    .

    ,

    ,

    , ,

    (1 )

    [7].

    .

    Table 1 Physical description of the ultra-fine particles

    Data offered from the manufacturers.

    * Data for 0-2% porosity, at 300K.

    PZC; Point of zero charge.

    (a) -Al2O3 (c) TiO2 (anatase)

    (b) SiO2

    Fig. 1 Photographs of ultra-fine particles

    Fig. 2 .

    , pH Table 1

    () .

    (1000015000rpm),

    pH . pH

    , pH

    . pH

    228

  • ,

    . , ,

    . Table 2

    pH,

    w v .

    ,

    , 2

    ,

    .

    Fig. 2 Making process of the dispersed system

    Table 2 Dispersed systems

    Fig. 3 Transient hot-wire cell

    3.

    [13, 14] .

    [15] .

    Fig. 3 .

    (32mm, 215mm) ,

    . ,

    () .

    . 28m

    6.5m

    . 2

    150mm60mm .

    [7], [15]

    . 2

    2 , ,

    , .

    , 1W/m,

    70mA .

    ,

    ,

    ,

    ,

    .

    -

    .

    ,

    , ,

    [16].

    ,

    .

    ,

    ,

    .

    229

  • Fig. 4 Effective thermal conductivity of

    water-A12O3 system

    A Meredith and Tobias [18], sphereB Hamilton and Crosser [19], circular cylinder,

    height/diameter=1C-1 Yamada and Ota [2], cubeC-2 Yamada and Ota [2], rectangular prism,

    aspect ratio 1.8:1:1D Fricke [20], prolate spheroid, aspect ratio 6:1

    Fig. 5 Variation of dimensionless thermal

    conductivity of water-Al2O3 System

    4.

    4.1

    , ( )

    . ,

    Nieto de Castro [17]

    Fig. 4 .

    1.5% ,

    .

    Fig. 4 -Al2O3 e

    T . ,

    e ,

    . Fig. 5

    e/c , v

    . c () e

    . e ,

    Fig. 4 , ,

    Fig. 5 . Fig. 5

    -Al2O3 e/c v

    , v_??_4.3% (w=15%)

    30% .

    e

    Meredith [18] (A) ,

    Hamilton [19] (B) Ya

    mada [2] (C-1) .

    B ( / )=1 , C-1

    . Al2O3

    .

    , ,

    , Fig. 1 (a) ,

    e A12O3

    . ,

    , Yamada

    ( , , )

    1.8:1:1 . Fig. 5

    C-2 . Al2O3

    , Fig. 1 (a) ,

    2.1 , 2:11:1

    ,

    . ,

    Fricke [20] , C-

    2

    6:1 ,

    D .

    C-2 , Fig. 1 (a)

    .

    Fricke v

    230

  • [5], e

    .

    -SiO2 Fig. 6

    . Meredith .

    SiO2

    , Fig. 1 (b)

    . v e

    .

    Fig. 7 -TiO2 e/c

    [7] .

    Meredith , Hamilton

    ( ) .

    -TiO2 e/c v

    .

    . Fig. 1 (c)

    , TiO2

    , ,

    .

    Yamada

    Fig. 7 C ,

    .

    , 3

    , e v

    , .

    , .

    ,

    , ,

    pH

    ,

    .

    Fig. 6 Variation of dimensionless thermal

    conductivity of water-SiO2 system

    A Meredith and Tobias [18], sphereHamilton and Crosser [19], sphere

    C Yamada and Ota. [2], cube

    Fig. 7 Variation of dimensionless thermal conductivity of water-TiO2 system

    4.2

    3 , 300

    350K . -Al2O3

    Fig. 8 . [21]

    . -Al2O3

    .

    [22] , v

    .

    3 rel[=/c

    (c; )] v Fig. 9

    . v

    Guth-Gold [22]

    . -SiO2 v rel

    , -Al2O3, -TiO2

    . Guth-Gold

    , rel

    .

    , , ,

    , pH

    ,

    . SiO2Al2O3

    10nm , Table 1

    ,

    rel

    . TiO2

    2 , v

    4.3% 60% .

    SiO2 , OH

    231

  • ( )

    , [8].

    ,

    .

    Fig. 8 Viscosity of water-Al2O3 system

    Fig. 9 Variation of relative viscosity of water

    -Al2O3, water-SiO2 and water-TiO2

    system with volume fraction of particles

    5.

    , ,

    , .

    (1) Al2O3, SiO2 TiO2

    , ,

    .

    (2) -Al2O3 -TiO2 e

    v ,

    e

    , .

    (3) -SiO2 , v2.3% c

    .

    (4) SiO2Al2O3

    v .

    TiO2

    , 60% .

    , ,

    ,

    ,

    .

    [1] ; , 3 (1989), 78.

    [2] E. Yamada, T. Ota; Warme- und Stoffubertragung, 13 (1980), 27.

    [3] I. L. Erukhimovich, M. S. Rivkin; AIChE Jourual, 37 (1991), 1739.

    [4] D. L. Cullen, M. S. Zawojski, A. L. Holbrook; Plastics Eng., 44 (1988), 37.

    [5] , ; , 3 (1989), 106.

    [6] Y. W. Song, E. Hahne; High Temperatures-High Pressures, 19 (1987), 57.

    [7] H. Sasaki, H. Masuda, I. Mizuta, N. Hishinuma; Proc. 3rd Asian Thermophys. Proper. Coof., Beijing,

    (1992), 425.

    [8] ; , 18 (1983), 868.

    [9] , - 1-12

    ( , 1987).

    [10] , 260-261

    ( , 1990).

    [11] [9] , 54.

    232

  • [12] , , 78

    ( , 1979).

    [13] , , ; , 143 (1977), 2268.

    [14] , ; , 147B (1981), 821.

    [15] , ; , 147B(1981), 1323.

    [16] N. P. Matusevich, L. P. Orlov, V. B. Samoilov, V. E. Fertman; Heat Transfer-Soviet Research,

    19-3 (1987), 25.

    [17] [10] , 592.

    [18] R. E. Meredith. C. W. Tobias; J. Electrochemical Soc.,103 (1061), 286.

    [19] R. L. Hamilton, O. K. Crosser; Ind. Eng. Chem. Fund., 1 (1962), 187.

    [20] H. Friche; Physical Review, 24 (1924), 575.

    [21] [10] , 64.

    [22] [12] , 254-265.

    Alteration of Thermal Conductivity and Viscosity of

    Liquid by Dispersing Ultra-Fine Particles (Dispersion

    of Al2O3, SiO2 and TiO2 Ultra-Fine Particles)

    Hidetoshi Masuda*, Akira Ebata,

    Kazunari Teramae, Nobuo Hishinuma*

    * Institute of Fluid Science,

    Tohoku University, Sendai 980

    Toto-Kiki Co., Ltd.

    Graduate student, Tohoku Uniyersity

    How much the thermal conductivity of a liquid can

    be altered by dispersing a small amount of ultra-fine par

    ticles into it has been studied. Fine powders of Al2O3,

    SiO2 and TiO2 were used as the ultra-fine particles , and

    water was selected as the base liquid. Three dispersed

    systems were made by applying the technique of elec

    trostatic repulsion. For the systems of water-Al2O3 and

    water-TiO2, effective thermal conductivities were seen

    to increase much more as the particle concentration was

    increased, but that of water-SiO2 system almost never

    increased. Viscosities of their dispersed systems were

    also measured, and the characteristics were made clear.

    (Received April 7, 1993.)

    (Accepted for publication June 21, 1993.)

    233