37
EKOHYDROLOGICZNE PODSTAWY OGRANICZANIA EUTROFIZACJI W SYSTEMACH RZECZNYCH I ZBIORNIKACH ZAPOROWYCH Professor MACIEJ ZALEWSKI Director European Regional Centre for Ecohydrology PAS u/a UNESCO Chairman of Department Applied Ecology University of Łódz

M. zalewski lublin 2015 final

Embed Size (px)

Citation preview

Page 1: M. zalewski  lublin 2015 final

EKOHYDROLOGICZNE PODSTAWY OGRANICZANIA EUTROFIZACJI W SYSTEMACH RZECZNYCH I ZBIORNIKACH ZAPOROWYCH

Professor MACIEJ ZALEWSKI Director European Regional Centre for Ecohydrology PAS u/a UNESCO

Chairman of Department Applied Ecology University of Łódz

Page 2: M. zalewski  lublin 2015 final

UNESCO International Hydrological Programmephase VIII: 2014 -2021

Page 3: M. zalewski  lublin 2015 final

Acceleration of water outflow from catchment and habitats degradation

UNESCO EcohydrologyDanube Demosite(Janauer 2010)

Page 4: M. zalewski  lublin 2015 final

What we have done with climate, water and nutrients cycles?

The forecast of water resources limitation in 2025

1/ Water - acceleration the outflow to the seas from the agricultural and urbanized land (70%)

2/ Carbon and nutrients - reduction of the organic carbon amount in the catchments landscapes in soils and biomass

3/ Above two processes reduce biological productivity and resilience of ecosystems and increase load of the nutrients and pollutants in to aquatic ecosystems where they generate siltation and secondary pollution

0

Global average warming: 2.8°C

Lake Tanganika

Page 5: M. zalewski  lublin 2015 final
Page 6: M. zalewski  lublin 2015 final

Tanganika Lake

NASA Earth Observatory

Gulf of Mexico

Transfer of organic matter and pollutants to coastal zone

Page 7: M. zalewski  lublin 2015 final

Ecohydrological – Process - oriented thinking

Modification of water cycle due to

- Deforestation- Unification of agricultural landscape

- Stream channelization- Impermeable urbanised space- Storm water and drainage systems

Catchment’s deforestation in Ethiopia Climate change Warta River Poland

An

nu

al e

vap

ora

tio

n [

mm

]

D – atmospheric water vapour deficit [hPa]V – wind speed [ms-1]R – solar radiation balance [Wm-2]

M = D*V*R/100

- Stream channelization- Impermeable urbanised space- Storm water and drainage systems

Terr

estr

ial p

has

eA

cqu

atic

ph

ase

Drying airDrying air

Drying landDrying river

Kędziora 2012-2014

Drought area (%) in central Poland

Mea

n a

nn

ual

dis

char

ge [

m3s-1

]W

arta

Riv

er

Page 8: M. zalewski  lublin 2015 final

(HELCOM, 2011; SYKE, 2011)

Diffuse pollution

Proportion of sources contributing to P and N input into the Baltic Sea

Page 9: M. zalewski  lublin 2015 final

The concept of abiotic – biotic regulation continuum , explaining changes in the hierarchy of factorswhich determine the structure and dynamics of riverine fish communities at different geographic zones.( Zalewski & Naiman, 1985)

The deductive background of ecohydrological theory Model of hierarchy of the regulatory factors as key for process oriented thinking

Page 10: M. zalewski  lublin 2015 final

The deductive background of ecohydrological theory is, that the amount of waterdetermines the amount of carbon accumulated in an ecosystem whiletemperature determines the carbon allocation between biomass and soil organicmatter.The maximum biodiversity and bioproductivity is achieved at highest wateravailability and highest temperatures . (Zalewski 2010)

Page 11: M. zalewski  lublin 2015 final

DUAL REGULATIONRegulation of biotaby altering hydrologyand regulation of hydrologyby shaping biota

HARMONIZATIONof ecohydrological measureswith necessary hydrotechnicalinfrastructure

INTEGRATIONof various regulations acting in a synergistic way to stabilize and improve the quality of water resources

REGULATION

ECOHYDROLOGY - THE MAJOR BODY OF THE THEORY

ERCE UNESCO , Poland Zalewski 20011

BIOTA

HYDROLOGY

Page 12: M. zalewski  lublin 2015 final

Białowieża National ParkRecultivated spoil heap of Bełchatów Mine

Constructed ecosystems in Olentangy River Wetland Research Park, Ohio

Zalewski, M. 2013. Ecohydrology: process-orinted thinking towards sustainable river basins. Ecohydrol. Hydrobiol. 13(2), 97-103.

Key approaches in environmental sciences towards sustainability

Process-oriented thinking

Structure-oriented thinking

Zalewski, M. 2013. Ecohydrology: process-oriented thinking towards sustainable river basins. Ecohydrol. Hydrobiol. 13(2), 97-103

Page 13: M. zalewski  lublin 2015 final

FLOOD PROCESSES IN THE PILICA FLOODPLAIN

DigitalTerrain Model

Quantification of flood sedimentation on the experimental floodplain

MASS OF FLOOD

SEDIMENTS

(1+2)

MASS OF

PLANTS

COMPONENT

(1)

MASS OF FINE-

GRAIN FLOOD

SEDIMENTS

(2)

PHOSPHORUS CONTENT IN

FINE-GRAIN FLOOD

SEDIMENTS

[g m-2] [g m-2] [g m-2] [mg P g s.m.

osadu-1]

[mg P m-2]

153,1 68,3 84,8 3,3 202,9

Sedimen-tation

Kiedrzyńska E., Kiedrzyński M., Zalewski M., 2008. Ecohydrology & Hydrobiology, Vol. 8, No 2-4, 281-289.

Page 14: M. zalewski  lublin 2015 final

W. L. (260 cm)

Model of the flooding for the highest water level

DTM of the 30 km section of the Pilica River valley

QUANTIFICATION OF FLOOD PROCESSES AND SEDIMENTATION

IN THE VALLEY

RETENTION

Flooding

areas

Sediments

load

TN

load

TP

load

1007 ha 560 tons 8 tons 129 tons

Experimental river floodplain

Identification

of the flooding areas

in the valley

Retention

of nutrients

and sediments’

load

Kiedrzyńska E. et al. (in preparation).

Page 15: M. zalewski  lublin 2015 final

MODELS - CCHE2D

Q=0,23 m/swsl= 169,6

Q=1,61 m/swsl=171,07 WWQ=161 cm3/s

SSQ=23.3 cm3/s

[kg/s]

Oxford – Mississippi USA United States – PolandTechnology Transfer Project

- mean flow condtitions

- high flow condtitions

Simulation of watervelocity distribution

Suspended and bedloadtransport

Magnuszewski, Kiedrzyńska, Wagner, Zalewski. 2005

2D Models to predict,

characterise and better

understand sedimentation

processes on the Pilica River

floodplain

TWO-DIMENSIONAL „CCHE2D” MODELS

Altinakar M., Kiedrzyńska E., Magnuszewski A. 2006. Modelling of inundation pattern at Pilica river floodplain, Poland. In: Demuth S., et al. (Eds) Climate Variability and Change—Hydrological Impacts. IAHS Publ. 308. 579-585.

Page 16: M. zalewski  lublin 2015 final

Molecular biologyfor Ecohydrology:

methods for early warning and

biotechnologies enhancement

Cause-effect analysistoxigenic cyanobacteriaand physicochemicla parameters of water

Analisys of relationship between organismscyanobacteria/bacteria/cyanophages•detection of cyanophages degrading cyanobacterialcells•detection of bacteria degrading cyanotoxins

mcyA gene, toxic genotype of M aeruginosa(291 – 297 bp)

16S rRNA Microcystis, mcyA toxic genotype

g91 Myoviridae , 16S rRNA Aeromonas

Early warning detection of toxigenic (potentially toxic) strain of cyanobacteria

… for

regulation of processes

towards:

1. Rreversing degradation;

2. Development of cost

efficient measures

3. Enhancing the carrying

capacity of ecosystems

nosZ gene, culturable bacteria, Pseudomonas sp.

New reserach

Gagała et al., Microbial Ecology, 2013,

DOI: 10.1007/s00248-013-0303-3

Mankiewicz-Boczek et al., Environ. Toxicol. 2006, 21: 380-387Mankiewicz-Boczek et al., Environ, Toxicol. 2011, 26, 10-20Mankiewicz-Boczek et al., Harmful Algae 2011, 10: 356-365Gagała et al., Fresenius Environ. Bull 2012, 21(2): 295-303

Ecohydrological biotechnologies- process optimization selection and implementation of bacteria in denitrifying barriers to removal of

nitrate compounds

Page 17: M. zalewski  lublin 2015 final

Eksperymenty z udziałem bakterii hodowalnych

Rola mikroorganizmów w dynamice występowania toksycznych zakwitów sinic

Bakterie zdolne do degradacji mikrocystyn

Analiza homologii BLAST wykazała ≥94% podobieństwa do genu 16S rRNA bakterii Aeromonas veronii w-s-03

sekwencjonowanie

16S rRNA gene

64 AGCGGCGGACGGGTGAGTAATGCCTGGGGATCTGCCCAGTCGAGGGGGATAACTACTGGA 123 124 AACGGTAGCTAATACCGCATACGCCCTACGGGGGAAAGCAGGGGACCTTCGGGCCTTGCG 183

184 CGATTGGATGAACCCAGGTGGGATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGAC 243

244 GATCCCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACT 303

304 CCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGC 363

364 CGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGGT 423

424 AGCTAATAACTGCCAGCTGTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCA 483

484 GCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCAC 543

544 GCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAA 603

604 AACTGTCCAGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCG 663

664 TAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG 723

724 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGAT 783

784 GTCGATTTGGAGGCTGTGTCCTTGAGACGTGGCTTCCGGAGCTAACGCGTTAA-TCGACC 842

843 GCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGC 902

903 GGTGGAGCATGTGGTTTAATTCGATGCAACGCGAARAACCTTACCTGGCCTTGACATGTC 962

963 TGGAATCCTGTAGAGATRCGGGAGTGCCTTCGGGAATCAGAACACAGGTGCTGCATGGCT 1022

Sulejów Tresta 2010

05.0

5.2

010

19.0

5.2

010

01.0

6.2

010

16.0

6.2

010

30.0

6.2

010

13.0

7.2

010

04.0

8.2

010

11.0

8.2

010

26.0

8.2

010

17.0

9.2

010

05.1

0.2

010

Aer

om

on

as

iso

late

B MM

900 bp

800 bp

600 bp

400 bp

300 bp

200 bp

100 bp

500 bp

700 bp

1000 bp

16S rRNA

Aeromonas

(953 bp)

Sulejów Tresta 2010

Mankiewicz-Boczek et al., Environ. Toxicol., wysłano do recenzji

Page 18: M. zalewski  lublin 2015 final

90% podobieństwa do cyjanofaga z rodziny Myoviridae,

szczep Ma-LMM01g91

14 ACCTAACCAGATTG 1

70 GCTGGAGTATTAGAGTTAMCAAG-AST-T--TCCTCTGTGCCCATCTCTAGCGGCGACCT 15

130 ACATCAGCGTTCGTTTCGGCACTGTAGCCGGTGCAGCCCTCAWTATAGTAGAGGGTAATA 71

Sulejów Reservoir

Amplifikacja genów: 16S rRNA, mcyA, g91

Rola mikroorganizmów w dynamice występowania toksycznych zakwitów sinic

sinice

genotypy toksyczne

cyjanofagi

sinice

genotypy toksyczne

cyjanofagi

sinice

genotypy toksyczne

cyjanofagi

Degradacja komórek sinicowych przez cyjanofagi (gen g91)

Sekwencjonowanie

Page 19: M. zalewski  lublin 2015 final

1 m

1, 3 mbrown

coal

calcium coal

Manure storage site before constructing the ditches

A

C

B

Photo 2. Example from the demonstration site, restoration of a point source of nitrogen – manure storage site in the village of Jervonice, central Poland A – manure storing site before constructing the ditch; B- mixed material, brown and calcium coal; C –underground constructed ditch

before ditches in ditches behind ditches-400

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

mg

NO

3 l

-1

Average

Average +/- SD

Min-Max

Fig. 2. Average nitrate concentration in ground water befor, in and behindditch in Jervonice demonstration site.

Denitrification in the catchment can be enhanced by the increase of an organic carbon content in the soil

65%

Bednarek et. al. 2014, in press

European Regional Centre for Ecohydrology u/a UNESCO, Lodz, Poland

Page 20: M. zalewski  lublin 2015 final

European Regional Centre for Ecohydrology u/a UNESCO, Lodz, Poland

APPLICATION OF MICROBIAL ACTIVATORS – DENITRIFYING BACTERIA

2NO3- 2NO2

- 2NO N2O N2

main objectiveacceleration of activation of the denitrifying ditch and increasing its capacity

nitritereductase

nirS or nirK

nitric oxidereductase

cnorB or qnorB

nitric oxidereductase

nosZBacterial genes active in denitrification complete process

Amplification of nosZ gene

Detection of bacterial strains from ditch with coal (J) and ditch with sawdust (U)

J U

J

U

Page 21: M. zalewski  lublin 2015 final

(www.geoportal.gov.pl)

Nitrogenload

from agricultural land

Sulejow Reservoir Denitrification walls

Plants

Recreational facilities (jetty)

Recreational facilities (jetty)

Biogeochemical barriers

Plants

0

50

100

150

200

250

300

350

400

B1 B2 B3 B4 B5

3.09.2010

30.09.2010

3.11.2010

9.12.2010

Critical value

marking polluted water

acc. to Nitrates

Directive

0

1

2

3

4

5

6

7

Z1 Z2 Z3 Z4 Z5

3.09.2010

30.09.2010

3.11.2010

9.12.2010

19.01.2011

Critical value

for appearance of

cyanobacterial bloom

(www.geoportal.gov.pl)

Sulejow Reservoir

Phosphorusloadfrom recreational area

DEVELOPMENT OF SOLUTIONSIDENTIFICATION OF PROBLEMS

Reduction of nitrogen pollution from diffuse source by enhancement of plant buffering zones with denitrification walls

Reduction of phosphorus pollution from diffuse source by enhancement of plant buffering zones with biogeochemical barriers

Izydorczyk Zalewski, 2011PROJECT: EKOROB

Page 22: M. zalewski  lublin 2015 final

European Regional Centre for Ecohydrology u/a UNESCO, Lodz, Poland

Biogeochemical limestone-based barriers to enhance phosphorus reduction in buffer zone

(Izydorczyk et al. Ecohydrology & Hydrobiology 2013)

Ph

osp

hat

e co

nce

ntr

atio

nin

gro

un

dw

ater

[m

gPO

4/l

]

przed za0

2

4

6

8

10

12

14

Upstream of barrier

Downstream of barrier

Page 23: M. zalewski  lublin 2015 final

Przed

Poligon demonstracyjny projektu LIFE+ EKOROB

Teraz

Wdrażanie wiedzy, Rekreacja, Edukacja

Page 24: M. zalewski  lublin 2015 final

European Regional Centre for Ecohydrology u/a UNESCO, Lodz, Poland

Page 25: M. zalewski  lublin 2015 final

Ecohydrology for the City of the future

18,4%16,1%

6% 6,7%

0%

5%

10%

15%

20%

asthma hay fever

Urban-rural differences in the prelanence of asthma and hay fever in children

city-center

rural area

Kuna, Kuprys-Lipinska, 2009

y = 0.4626e0.4812xR² = 0.9857

0

1

2

3

4

5

1-30 31- 70 71-80 81-100

Con

ce

ntr

atio

n B

(a)P

(n

g/m

3)

Surface impermability (%)

Page 26: M. zalewski  lublin 2015 final

LIFE08 ENV/PL/000517www.arturowek.pl

ZAKWITY GLONÓW I TOKSYCZNYCH SINIC w zbiornikach rekreacyjnych na terenie miasta Łodzi

Stawy Stefańskiego, 2006

prototyp SSSB* skonstruowany na rzece Sokołówce, projekt SWITCH

*Sekwencyjny System Sedymentacyjno-Biofiltracyjny (patent ERCE)

wariantowe rozwiązania SSSB* skonstruowane na rzece Bzurze

w Arturówku, projekt EH-REK

Stawy Stefańskiego

Stawy Jana

Stawy Stefańskiego, 2007

Page 27: M. zalewski  lublin 2015 final

+38%

Stormwater inflowin to SBS

Enhanced sedymentation zone

Outflow purifiedstormwaters

Ca3(PO4)2↓

Geochemical barirere enhanced by geotextile curtains

Biofiltration zone

C6H12O6 + 6O2---->6CO2 + 6H2O

Filtering bedregeneration system

EH: Sequential Sedimentation-Biofiltration System (Zalewski 2008)

TOTAL SUSPENDED SOLIDS

TOTAL PHOSPHORUS

Page 28: M. zalewski  lublin 2015 final

Kiedrzyńska E., et. al. (in preparation).

Limstone zone Coal zone Sawdust zone1 Phase 2 Phase 3 Phase 4 Phase

Wetland with macrophytes3,5 m 3,45 3,5 0,5 0,5 0,5

monitoring stationsregeneration system -

Sequential Biofiltering System for improvement efficiency small WWTP

based on sequence of limestone, coal, sawdust and constructed wetlands

Sequential filtration of pollutants Biological treatment of pollutants

Outflow

from WWTPto the SBS

Outflowof purifiedWW to the river

I II III IV

Mean TP reduction: 26%Max. TP reduction 76%

Mean TN reduction: 48%Max. TN reduction 97%

Page 29: M. zalewski  lublin 2015 final

LIFE08 ENV/PL/000517www.arturowek.pl

VI.2013 V.2013

VI.2013

Sekwencyjny system sedymentacyjno-biofiltracyjny (SSSB) do przejmowania wód burzowych z ulicy Wycieczkowej

VI.2013

Page 30: M. zalewski  lublin 2015 final

LIFE08 ENV/PL/000517www.arturowek.pl

ECOHYDROLOGY – harmonisation of hydrological and biologicalsolutions for the freshwater ecosystem improvement

low cost and high effectiveness solution:(non-invasive, not disturbing the landscape,

sub-surface)

Page 31: M. zalewski  lublin 2015 final

LIFE08 ENV/PL/000517www.arturowek.pl

The final effect of implementation of Ecohydrology for enhancement ecosystems services in small urban catchment (Jurczak, Zalewski in prep)

The recent ecological andrecreational ststaus

Good water qualityof recreational lake

SSBS

The Past

Page 32: M. zalewski  lublin 2015 final

biomasa chwastow w

pierwszy m roku t s m na ha

~

utrata biomasa wierzby na skutek

zachwaszczenia w 1roku %

Biomasa

czy nnik 1

czy nnik 2

~

gestosc obsady a biomasa

biomasa chwastow

w drugim roku t s m na ha

~

utrata biomasy wierzby na skutek

zachwaszczenia w 2 roku %

procent utraty

biomasy przez 1 rok

procent utraty biomasy

przez drugi rok

utrata biomasy wierzby na skutek

zachwaszczenia w ciagu 4 lat

wilgotnosc

gleby %wzrost biomasy a N

przez 4 lata

procentowa ilosc zaatakowany ch

sadzonek przez szkodniki

gestosc obsady

ilosc sadzonek na ha

~

srednia miesieczna

temperatura dla Lodzi oC

~

srednie miesieczne

opady dla Lodzi

wilgotnosc

gleby %

~

srednia miesieczna

temperatura dla Lodzi oC

gestosc obsady

ilosc sadzonek na ha

~

pH gleby

a biomasa

pH gleby

~

akty wnosc zwierzy ny

a jej ilosc

ilosc sadzonek zaatakowany ch

przez szkodniki na ha

~wspolczy nnik wilgotnosci

~

biomasa

zjedzona przez zwierzy ne

w kolejny ch latach

~

biomasa a

zwierzy na

~

wilgotnosc

a temperatura

~wilgotnosc a opady

~

poziom wody

a opady

~

f otosy nteza

ilosc

zwierzy ny

~

przezy walnosc

a sila ssaca gleby

~

sila ssaca

gleby pF

wzrost biomasy a P

przez 4 lata

wzrost biomasy a K

przez 4 lata

przy zy walnosc a poziom wod

gruntowy ch w ciagu 4 lat

Translation interdisciplinary knowledge in to decision support modelsConversion sewage sludge in to bioenergy,/biomass production module

(Drobniewska Zalewski 2008)

Page 33: M. zalewski  lublin 2015 final

Use of biodegradable geofibers for erosion controll

Construction of the sequentional biofiltration system for turbidity, eutrophication and dioxin toxicity reduction in the Asella BioFarm

Park lake

Dioxin toxicity reduction in the Asella

BioFarm Park lake

Use of sediments for bioenergy production

Sedimentation

Stock watering site and use of manure collected at the siteas a fertilizer

Before After

0

0,5

1

1,5

2

2,5

Sediment trap Biofiter Lake

toxi

city

[n

g T

EQ

/kg

d.w

.]

0

0,5

1

1,5

2

2,5

Inflow Lake Otflow

To

xici

ty [

ng

TE

Q/k

g d

.w.]

toxicity limit ccording to SQG

Zalewski, Urbaniak, Negussie 2013

The implementation of the ecohydrologymethods and systemic solutionsfor reduction of sedimentation, eutophicationand dioxin-induced toxicityin the Asalla BioFarmPark lakeETHIOPIA

Page 34: M. zalewski  lublin 2015 final

Ecohydrology:

tool for mitigation of intermediate impacts

Photo: E. Kiedrzyńska

%

Ecohydrological

ecosystem

biotechnologies

Environmental technologies

(sewage treatment,

hydroengineering, civil

engineering)

Point-source

pollution

Non-point source

pollutionNatural

background

20

40

60

100

Zalewski 2014

unpublished

Effic

iency 80

Nutrient concentration

Catchment

resistance &

resilience

0.03 0.1 1 10 mg P L-1

Photo: T. Kamiński

www.uriuk.com M. PieńkowskiPhoto: M. Koch

Photo: M. Zalewski

Zalewski, 2013

Enhancement of high-energy consuming environmental engineering

technologies with low-cost ecohydrology biotchnologies

Page 35: M. zalewski  lublin 2015 final

hYDROL

ECOL

ENG

BIOTECH

HYDROLOGY

ECOLOGY

ENGINEERING

BIOTECHNOLOGY

(Zalewski 2013)

INTEGRATIVE ENVIRONMENTAL SCIENCE provides the framework for integration technologies with ecohydrology and biotechnologies towards harmonization of society needs with ecosystems potential

Page 36: M. zalewski  lublin 2015 final

Now I have understood what

”top down” means in

Ecohydrology.

http://colliercitizen.fl.newsmemory.com

Page 37: M. zalewski  lublin 2015 final

Thank you

The inspiring cooperation of my colleagues from ERCE PAS u/a UNESCO, Department of Applied Ecology, UŁ UNESCO Division of Water Sciences and IHP is highly appreciated and made the introduced projects happened