42
Welcom e to semina r series 2013-1 4 1

potassium dynamics

Embed Size (px)

Citation preview

Page 1: potassium dynamics

Welcome to

seminar series

2013-14

1

Page 2: potassium dynamics

Patel Dipak H.5th Sem. M. Sc.

Soil science and Agricultural chemistryN. M. C. A., N. A. U., Navsari

Major AdvisorDr. H. M. PATEL

Assistant Professor Department of soil science

N. M. College of Agriculture N. A. U., Navsari - 396 450

Minor AdvisorDr. D. D. PATEL

Associate Professor Department AgronomyCollege of Agriculture,

Bharuch N. A. U., Navsari- 396 450

“POTASSIUM DYNAMICS IN SOIL AND ITS IMPACT ON CROP

PRODUCTION”

2

Page 3: potassium dynamics

3

Introduction Potassium The role of potassium in increasing the yield of crops and

improving the quality of produces has been in

the agenda of soil scientists.

Potassium is the most abundant macronutrient in soils. It is also the seventh most

common element in the lithosphere which contains on average 2.6% potassium.

The total potassium content of Indian soils varies from 0.5 to 3.0%.

Total potassium present in soils, more than 98% occurs in primary and secondary minerals

and the rest occurs in either fixed or non-exchangeable form or exchangeable (adsorbed)

form or in soil solution.

Page 4: potassium dynamics

Role of Potassium to increase crop yield

4

Increases growth and improves drought resistance

for crop.

Activates many enzyme systems.

Maintains turgor; reduces water loss and wilting.

In photosynthesis and food formation.

Reduces respiration, preventing energy losses.

Enhances translocation of sugars and starch.

Produces grain rich in starch.

Builds cellulose and reduces lodging.

To helps for crop diseases resistance.

Page 5: potassium dynamics

Das (2004) 5

Page 6: potassium dynamics

FORMS OF SOIL K

6

There are four forms of K in soil:

1. Solution K

2. Exchangeable K

3. Fixed or non exchangeable K

4. Structural or mineral K

Page 7: potassium dynamics

1. Soil Solution K

7

This is the potassium present in soil solution and

measured by extracting the soil with distilled water.

Amount of water-soluble K generally comparable to

those determined by electro-ultrifilitration, a technique

proposed by Nemeth (1979).

Water-soluble K in soil may vary form 1 to 10 ppm in

soil.

Solution K concentration is important for successful

crop production specially maturity condition for crop.

Page 8: potassium dynamics

2. Exchangeable K

8

This is potassium held in the exchange complex of 2:1 layer

silicates.

soil containing mica group (<10 % K) having more exchangeable K

than those containing illite (6-8%) and vermiculite contains (<2%),

which in turn have more than the soil containing kaolinite.

The amount of exchangeable K in soil may vary from 40 to 600 ppm

in soil.

For the precise determination of exchangeable K, water-soluble K

should be determine by extracting soil with distilled water

separately and the value obtain should be substrated from the 1N

ammonium acetate extractable K value to obtain exchangeable K.

Page 9: potassium dynamics

3. Fixed or non exchangeable K

9

Nonexchangeable K is distinct from mineral K in that is not

bonded covalently within the crystal structure of soil mineral

particles; instead, it is held between adjacent tetrahedral such

as micas, vermiculites, and intergraded minerals.

K changes from a non-exchangeable from to an exchangeable

form.

Nonexchangeable K in soil is generally measured by extracting

the soil with 1 N boiling nitric acid and is reported as HNO3

extractable.

Nonexchangeable K, fixed K in soil varies from 50 to 750 ppm

in soil.

Page 10: potassium dynamics

10 Indian society of soil Science (2010)

Page 11: potassium dynamics

4. Structural or mineral K

11

The potassium bearing minerals in soil:

• Orthoclase [(K,Na)AlSi3O8]

• Microcline [(Na,K) AlSiO4],

• Muscovite-mica [KAl3Si3O10(OH)2],

• Biotite [K(Mg,Fe)3AlSi3O10(OH)2],

• Phlogopite [KMg3AlSi3O10(OH)2].

Potassium in mineral from in soils may vary

generally from 5000 to 25000 ppm in soil.

Page 12: potassium dynamics

BECKETT - Q/I RELATIONSHIPS

Exchange reaction and exchange capacity in soils are sources of

plant nutrient such as K, Ca and Mg. However, it is difficult to visualize

how the complex interaction between ions, exchange capacity and

extraction of nutrients by plant affect nutrient supplies. Beckett developed a technique and theory to examine the buffer

capacity of soils with respect to potassium. The theory is based on exchange reactions between Ca, Mg, and K.

Beckett called the buffering capacity of the soil with respect to

potassium quantity-intensity relations. In this concept Q stands for quantity, I stands for intensity. Although

the following from Beckett was derived for assessing potassium status

in soils, it can be generalized to a large number of other systems. 12

Page 13: potassium dynamics

The following graph illustrates the concept of Q/I for soil solution ions and soil buffering capacity as derived from the changes in Q in relation to changes in solution ion levels.

Soil A = clay soil Soil B = Sandy soil 13

Ads

sorb

ed Q

ualit

y (Q

)

Solution Intensity (I)

Page 14: potassium dynamics

Potassium Fixation

14

Potassium fixation : It is define as the conversion of soil

solution or exchangeable K into nonexchangeable forms

and was once considered a negative soil property

causing a drastic reduction of plant available K.

A number of factor affect potassium fixation in soil.

1. Clay minerals

2. Soil pH

3. Wetting and Drying

4. Potassium Fertilization

5. Freezing and thawing

Page 15: potassium dynamics

1. Clay minerals

15

The amount of K fixed by soil depends much

upon its clay content.

The greater the clay content, the greater the K

fixation.

Regarding the kind of clay minerals like illite,

weathered mica, vermiculite, smectite, and

interstratified minerals fix more K, while kaolinite

fixes very little.

Page 16: potassium dynamics

2. Soil pH

16

In acid soil the presence of Al+3 and aluminum

hydroxide cations and their polymer occupy the

K-selective binding sites on clay minerals.

Raising soil pH above neutrality increase the

negative charge on oxide and hydroxyoxides of

iron and aluminum, which result in increased

adsorption of K ions and consequent reduction

in soil solution K.

Page 17: potassium dynamics

3. Wetting and Drying

17

K-fixation despite great differences between

temperate and tropical soil, K fixation was 2 to 3

times grater than after wetting.

Arid - semiarid soil high in exchangeable K.

Drying of field-moist soils, particularly subsoil, with

low to medium levels of K is reported to increase

exchangeable K.

This has been attributed to the ex-folilation of edge-

weathered micas and exposure of inter layer K.

Page 18: potassium dynamics

4. Potassium Fertilization

18

Adding large amounts of fertilizer K generally result in

increased K fixation.

Because solution K concentration is generally increased,

disturbed the equilibrium between soluble and fixed K.

5. Freezing and Thawing

Freezing and thawing may result in increased

exchangeable K in some soil; however, the reverse may

also happen in illite soil.

Page 19: potassium dynamics

Loss of Potassium

19

Potassium leaching from a soil fluctuates in

accordance with the quantity, and intensity of

rainfall.

Despite low K content in tropical soils,

considerable K may be lost by leaching due

to heavy rains.

Page 20: potassium dynamics

20

On the older leaves, the edges will look

burned.

Plants will easily lodge and be sensitive to

disease infestation.

Fruit and seed production will be impaired

and quality is poor.

Potassium Deficiency

Page 21: potassium dynamics

21

K deficiency symptom in Banana and maize plant

Page 22: potassium dynamics

22

Fertilizers containing potassium must be

applied wherever soil potassium reserves are

inadequate for targeted crop or pasture

production. 

Potassium can be applied as a straight

fertilizer, or as part of a blended or compound

fertilizer with nitrogen and phosphorous.

Potassium Fertilizer

Page 23: potassium dynamics

Material N (%) P2O5 (%) K2O (%) S (%) Mg (%)Potassium chloride - - 58-60 - -

Potassium sulfate - - 48-50 17 -Potassium magnesium sulfate - - 22 22 11

Potassium nitrate 13 - 44 - -Potassium and sodium nitrate 15 - 14 - -

Manure salts - - 22-27 - -

Potassium hydroxide - - 83 - -

Potassium carbonate - - < 68 - -

Potassium orthophosphate - 30-60 30-50 - -

Potassium polyphosphates - 40-60 22-48 - -

Potassium meta phosphate - 55-57 38 - -Potassium calcium pyrophosphate - 39-54 25-26 - -

Table 1: Plant Nutrient Content of Common Potassium Fertilizers.

23

Page 24: potassium dynamics

24

Potassium is applied to majority of crops as

potassium chloride or muriate of potash.

The recognition that the Cl- ion, quite apart from

its role in plant nutrient.

Potassium sulphate is commonly applied to

tobacco and potatoes.

Choice of Potassium Fertilizer

Page 25: potassium dynamics

Table 2: Effect of different treatments on different forms of K (kg ha-1) in surface soil.

Treatment(K2O kg ha-1) Ws-K Exch-K Fixed K Mineral K

0 35.0 90.1 250.0 1291.615 38.3 137.6 245.9 1244.930 55.0 165.9 266.7 1579.245 43.3 166.7 250.1 2206.660 65.0 262.5 270.9 1741.675 58.3 254.2 241.7 2179.190 58.3 254.3 254.3 2133.2

CD (0.05) NS 95.7 NS 264.1

Ws-water soluble K, Exch.K-exchangeable K25

Kerala Joseph and Punnose(2000)Red and lateritic soil

Page 26: potassium dynamics

Table 3: Effect of different treatment on different forms of K (kg ha-1) in subsurface soil.

Treatments(K2O kg ha-1) Ws-K Exch-K Fixed K Mineral K

0 36.7 67.5 225.1 937.115 31.7 108.3 245.9 1014.130 36.7 131.7 255.0 1509.945 30.0 129.2 237.6 2003.260 43.3 157.5 245.9 1677.375 35.0 122.5 233.4 1809.190 48.3 134.2 230.0 1454.1

CD(0.05) NS NS NS NS

Kerala Joseph and Punnose (2000)Red and lateritic soil

26

Page 27: potassium dynamics

Table 4 : Effect of Added K and moisture regimes on dynamics of K under different soil series

Moisture andFertilizer regimes

Available K Water Soluble K Exchangeable K Fixed K

KCl K2SO4 KCl K2SO4 KCl K2SO4 KCl K2SO4

CHALKOT SOILS : Fine loamy, occurring on hill topsM1K50 63.80 63.30 8.00 9.00 55.80 54.30 18.50 19.00M1K100 112.40 111.80 18.00 17.00 96.40 94.80 19.90 20.50M1K150 161.60 160.90 28.00 29.30 133.60 131.60 20.70 21.40M2K50 64.95 64.20 10.20 10.50 54.75 53.70 17.35 18.10M2K100 114.60 113.35 18.40 19.10 96.20 94.25 17.70 18.95M2K150 164.20 161.70 29.40 30.50 133.80 131.20 19.10 20.60

ZUKHESHESEMA SOILS: Fine loamy, occurring on upper hill slopesM1K50 120.20 120.00 17.00 17.00 103.20 102.00 17.20 18.00M1K100 170.06 169.75 25.00 25.00 145.06 143.50 17.34 18.20M1K150 218.86 218.10 38.00 38.00 180.86 178.40 18.54 19.00M2K50 121.14 121.10 18.00 18.00 103.14 101.50 16.26 16.70M2K100 170.50 170.20 27.00 27.90 143.50 142.30 16.90 17.60M2K150 220.33 220.05 42.00 42.13 178.33 177.95 17.07 18.15

KANGAN SOILS: Fine loamy, on middle hill slopesM1K50 230.35 229.00 15.00 15.05 215.35 213.95 15.65 16.80M1K100 279.56 278.70 19.00 20.24 260.56 258.46 16.44 17.94M1K150 329.00 327.09 23.00 23.89 306.00 303.20 17.00 19.10M2K50 230.86 230.00 15.70 16.80 215.16 213.20 15.14 16.10M2K100 280.70 279.20 21.00 21.30 259.70 257.90 15.30 16.50M2K150 330.01 329.08 26.00 27.28 304.01 301.01 15.99 17.90Con…

27

Page 28: potassium dynamics

BHAGITTY SOILS: Fine loamy, occurring on foot hill slopes

M1K50 155.70 154.00 19.00 19.00 136.70 135.00 15.50 16.70

M1K100 204.90 203.40 36.00 36.50 168.90 166.90 16.30 17.80

M1K150 254.29 253.50 54.00 56.45 200.29 197.05 16.91 18.25

M2K50 159.35 158.00 23.00 24.00 136.35 134.00 11.85 12.25

M2K100 206.90 206.00 41.00 42.30 165.90 163.70 14.30 15.10

M2K150 255.78 255.17 60.00 62.32 195.78 192.85 15.42 16.80ZUSUMA SOILS: Coarse loamy, occurring in valleys

M1K50 340.98 340.50 80.00 81.85 260.98 258.65 2.52 3.05

M1K100 390.86 389.88 100.00 101.63 290.86 288.25 2.64 3.75

M1K150 440.23 439.60 115.00 117.50 325.23 322.10 3.27 4.80

M2K50 341.00 340.80 84.00 84.82 257.00 255.00 2.50 3.00

M2K100 391.00 390.98 106.08 106.08 285.00 284.00 2.50 3.21M2K150 440.72 440.20 124.00 124.55 318.72 315.65 2.78 3.65

M= Moisture regimes, M1=50% WHC, M2=1:2 soil solution ratio (submerged)New Delhi Singh et. al., (1999) 28

Page 29: potassium dynamics

Table 5: Forms of potassium in surface soil under different land use systemsName of the

land use system

Water soluble K(mg kg-1)

Exchangeable K(mg kg-1)

No-exch K (mg kg-1)

Total K (%)

Agri-system- RiceS-1 12.2 152.6 230.5 1.49S-2 11.6 132.0 220.6 1.35S-3 12.0 126.8 228.0 1.40S-4 12.6 135.1 232.8 1.22S-5 12.1 140.9 232.1 1.31

Mean 12.1 137.5 228.8 1.35Agri-system- Tobacco

S-1 10.2 64.8 210.8 1.62S-2 12.6 72.0 206.1 1.38S-3 16.0 60.8 209.0 1.40S-4 16.4 70.1 198.8 1.26S-5 13.1 59.4 204.2 1.30

Mean 13.6 65.4 205.8 1.39Horti-system – Arecanut

S-1 12.8 120.5 308.7 0.82S-2 15.3 124.1 302.0 1.24S-3 16.6 112.8 290.0 0.98S-4 16.0 120.0 302.4 1.10S-5 13.4 126.1 314.0 1.06

Mean 14.8 120.7 303.4 1.04 Con…

29

Page 30: potassium dynamics

Silvi-system- EucalyptusS-1 12.5 98.3 290.7 1.17 2.95S-2 15.0 110.0 306.0 1.26 2.78S-3 12.5 102.8 298.0 1.02 2.89S-4 10.7 112.6 302.2 1.23 2.68S-5 13.6 98.7 318.7 1.32 3.22

Mean 12.9 104.5 303.1 1.20 2.90Current fallow land – Control

S-1 11.9 64.3 168.2 1.20 2.61S-2 13.3 79.4 186.4 1.38 2.34S-3 10.0 50.1 150.0 1.17 2.98S-4 11.0 62.8 161.3 1.25 2.58S-5 13.2 65.3 174.5 1.30 2.67

Mean 11.9 64.4 168.1 1.26 2.63

Karnataka Gurumurthy and Prakasha (2011)

loamy sandy to sandy loam soil

30

Page 31: potassium dynamics

Table 6: Potassium fixation capacity of surface soil samples under different land use systems.

Sample Amount of K fixed [cmol(p+)kg-1] Per cent K fixed (%)

Agri-system- RiceS-1 0.25 10.0S-2 0.31 12.5S-3 0.22 8.7S-4 0.36 14.0S-5 0.22 8.6

Mean 0.27 10.7Agri-system- Tobacco

S-1 0.32 12.5S-2 0.38 15.1S-3 0.39 15.5S-4 0.48 18.7S-5 0.39 15.2

Mean 0.39 15.4Horti-system – Arecanut

S-1 0.44 17.1S-2 0.51 20.0S-3 0.57 22.2S-4 0.41 16.0S-5 0.48 18.7

Mean 0.48 18.8 Con…..31

Page 32: potassium dynamics

Silvi-system- EucalyptusS-1 0.59 23.1S-2 0.76 29.6S-3 0.61 24.1S-4 0.57 22.5S-5 0.59 23.0

Mean 0.62 24.5Current fallow land – Control

S-1 0.65 25.3S-2 0.46 17.9S-3 0.63 24.5S-4 0.64 25.1S-5 0.49 19.1

Mean 0.57 22.4

Karnataka Gurumurthy and Prakasha (2011)

loamy sandy to sandy loam soil

32

Page 33: potassium dynamics

Table 7: Correlation coefficients among Various forms of potassium

Sr. No Forms of K Total K Fixed K Exchangeable K

Water Soluble K

1 Total K - 0.48** 0.44** 0.37**

2 Fixed K - - 0.72** 0.53**

3 Exchangeable K - - - 0.63**

Uttar Pradesh Singh et. al., (2007) 33

Page 34: potassium dynamics

Table 8: Correlation coefficients between chemical properties among Various forms of potassium(n=200)

Soil Characteristics

Potassium fraction

Total K Fixed K Exchangeable K

Water Soluble K

pH 0.06 0.02 0.07 -0.05

EC 0.05 0.11 0.17* 0.09

CaCO3 0.06 0.02 0.09 0.08

Organic carbon 0.04 0.42** 0.10 0.02

Mean pH 7.3-9.4 EC (dsm-1) = 0.35 CaCO3= 20.2 Organic Carbon (g kg-1) = 4.27

Uttar Pradesh Singh et. al., (2007) 34

Page 35: potassium dynamics

Table 9: Fraction of various forms of the Potassium in different soil Series of Navsari

Series nameWater soluble K Exchangeable

K

NonExchangeable

KTotal K Mineral K

0-15cm 15-30cm

0-15cm

15-30cm

0-15cm

15-30cm

0-15cm

15-30cm

0-15cm

15-30cm

Eru Series 0.028 0.025 0.59 0.53 0.86 0.69 20.15 23.88 18.67 22.63Jalalpur Series 0.027 0.023 0.71 0.62 1.09 1.01 29.54 29.82 27.70 28.17

Amalsad Series 0.026 0.020 1.06 0.75 1.19 1.34 23.76 25.48 21.48 23.37

Mandir Series 0.034 0.030 0.69 0.57 1.08 1.07 21.14 23.36 19.34 21.69

Bodali Series 0.029 0.025 0.59 0.40 1.09 0.88 18.96 20.33 17.25 19.02Sisodra Series 0.057 0.048 1.11 0.78 1.22 1.16 27.43 27.95 25.05 25.96

Onjal Series 0.039 0.035 0.39 0.21 1.33 1.27 28.28 31.30 26.52 29.78Aat Series 0.041 0.033 0.47 0.26 1.19 1.29 24.20 26.97 22.51 25.38

Dandi Series 0.041 0.034 0.54 0.34 0.74 0.65 19.42 22.04 18.10 21.02Bilimora Series 0.037 0.029 0.48 0.31 0.69 0.68 24.19 27.60 22.98 26.58

Gadat Series 0.064 0.055 0.82 0.69 1.13 0.65 22.28 24.07 20.26 22.67Kabilpor Series 0.049 0.039 0.58 0.53 1.30 1.12 23.69 24.75 21.76 23.06

Mean 0.039 0.033 0.67 0.50 1.08 0.98 23.58 25.63 21.80 24.11 Navsari Singh(2012) 35

Page 36: potassium dynamics

Table 10: Q/I parameters of potassium for different soil series in Navsari District.

Navsari Singh (2012)

Sr. No. Soil series

ARK k Potential PBCNon Specific

K (cmol/kg) (mol L-1)1/2 cmolkg-1/(mol L-1)-1/2  (cmol/kg)

1 Eru Series 0.0025 1.41 23.60 0.06

2 Jalalpur Series 0.0039 3.11 28.30 0.11

3 Amalsad Series 0.0025 0.99 19.80 0.05

4 Mandir Series 0.0048 3.54 27.30 0.13

5 Bodali Series 0.0022 3.71 41.30 0.09

6 Sisodara Series 0.0057 3.44 24.60 0.14

7 Onjal Series 0.0032 1.11 18.50 0.06

8 Aat Series 0.0047 3.61 27.80 0.13

9 Dandi Series 0.0084 4.27 22.50 0.19

10 Bilimora Series 0.0028 1.30 21.70 0.06

11 Gadat Series 0.0023 2.81 35.20 0.08

12 Kabilpor Series 0.0039 4.38 33.70 0.1336

Page 37: potassium dynamics

Table 11: Long-term effect of organic materials addition on the distribution of available K (mg kg-1) in soil ( 5 year data)

Treatment Depth (cm)

0-7.5 7.5- 15 15-30 30-60 Mean Experiment-I

N150 35.0 30.0 28.0 31.0 31.0GM 28.5 25.5 27.5 32.0 28.4WS 34.5 27.0 26.5 33.0 30.3

WS+GM+RS 36.5 30.0 29.0 30.0 31.4FYM 35.0 32.5 28.0 36.0 32.9

FYM+GM 36.0 30.5 27.0 31.5 31.3Mean 34.5 30.0 28.0 32.2  

LSD (p=0.05) Treatment=2.5, Depth=1.8, Treatment×Depth=NS

Experiment-IIRS Removed 33.0 20.5 21.0 22.5 24.3

RS Incorporated 38.0 36.5 34.5 34.0 35.8 N150 = 150 kg N ha-1 GM = Green Manure WS = Wheat Straw RS= Rice Straw

Ludhiana (Punjab) Pannu et. al. (2002) Sandy loam37

Page 38: potassium dynamics

Treatment

Grade wise Tuber yield (q/ha)Average tuber

weight (g)>75g 50-75g 25-50g <25g Total

K0 95.42 108.18 58.07 15.54 277.21 52.53

K50 140.68 131.09 46.36 15.89 334.02 61.52

K100 158.73 145.34 43.88 13.90 361.85 65.52

K150 169.54 152.42 42.12 13.64 377.71 69.88

SEm ± 5.84 3.98 3.65 3.12 8.49 2.15

CD (0.05) 16.83 11.45 10.51 NS 24.43 6.20

Table 12: Grade wise potato yield of Kufri Pukhraj as influenced by potassium.

Patna Singh (2010) 38

Page 39: potassium dynamics

Levels of potassium

Diameter of flower (cm)

Weight of individual flower

(g)

Yield of flowers(kg/plot)

K0 4.60 4.43 13.64

K50 5.49 4.91 17.96

K100 5.62 5.22 21.25

K150 5.74 5.43 22.72

K200 5.84 5.56 23.94

SEm ± 0.09 0.07 0.53

C.D. at 5% 0.27 0.22 1.59

Table 13: Effect of different levels of potassium on flowering attributes and yield of American marigold cv. ‘Siracole’

Mohanpur (West Bengal) sandy loam soil Pal and Ghosh (2010)

39

Page 40: potassium dynamics

Table 14 : Effect different levels of potassium on yield (kg ha-1) and nutrient uptake (kg ha-1) by coriander.

Level of potash N P K Seed

yieldStraw yield

K0 57.65 6.78 36.26 1517.62 2239.95

K15 67.53 7.91 42.88 1526.95 2283.08

K30 73.01 8.54 46.57 1615.75 2408.66

S.Em ± 2.06 0.23 1.43 41.52 60.90

C.D. at 5% 5.85 0.67 4.06 NS NS

Navasari Bhoya(2009) 40

Page 41: potassium dynamics

Comprehensive knowledge about the forms of potassium

and their relationship among themselves help in assessing

the status of potassium and its availability in soil. The surface soils contained normally more amount of all

forms of K than sub-surface soils except mineral and total

K.Q/I isotherm provides a better overview of K dynamics in

soils. It is useful method to assess the K supplying power of

soils to plant.K fertilization increased crop production and quality of

produce under deficient K soil.41

Conclusion

Page 42: potassium dynamics