29
Leslie S. Wolfe, Ph.D. Abhinav A. Shukla, Ph.D. Process Development KBI Biopharma, Durham, NC

Multimodal Chromatography

Embed Size (px)

Citation preview

Page 1: Multimodal Chromatography

Leslie  S.  Wolfe,  Ph.D.  Abhinav  A.  Shukla,  Ph.D.  

Process  Development  KBI  Biopharma,  Durham,  NC  

Page 2: Multimodal Chromatography

• Background  • Mixed  Mode  Chromatography  • Mobile  Phase  Modulators  

• CharacterizaGon  of  Protein  Binding    •  Linear  salt  gradient  eluGon  studies  •  log  k’  vs.  log  salt  concentraGon  plots  

• Enhancing  purificaGon  through  modulator  washes  • During  Capture  step  • During  Polishing  step  •  Process  impact  

Page 3: Multimodal Chromatography

•  Takes  advantage  of  more  than  one  type  of  interacGon    »  i.e.  ionic,  hydrophobic,  hydrogen  bonding  

•  Provides  enhanced  selecGvity,  “pseudo-­‐affinity”  •  Can  reduce  process  steps  •  Several  mixed  mode  resins  have  recently  been  developed  with:  

»  Increased  loading  capaci4es  »  Higher  ionic  strength  tolerance  

GE Healthcare, Capto MMC ligand

Ionic interactions

Hydrophobic interactions

Hydrophobic interactions

GE Healthcare, Capto Adhere ligand

Ionic interactions

Page 4: Multimodal Chromatography

•  Mobile  phase  modulators:  addiGves  incorporated  into  process  buffers  to  alter  protein-­‐ligand  interacGons  

•  Modulators  can  enhance  resin  selecGvity  and  eluate  purity  when  incorporated  into  load,  wash  and/or  eluGon  process  steps  

•  AddiGon  of  a  combinaGon  of  modulators  can  further  improve  selecGvity  

Modulator   Modulator  Effect  

MgCl2,  NaSCN,  KI   Decrease  hydrophobic  interacGons  Ethanol,  Methanol,  Isopropanol   Decrease  hydrophobic  interacGons  (used  in  low  concentraGons)  Urea   Weakens  hydrogen  bonding,  denaturant  Glycerol   Weakens  hydrophobic  interacGons  Ethylene  Glycol   Weakens  hydrophobic  interacGons  and  hydrogen  bonding  

Arginine    Weakens  hydrophobic  interacGons,  induces  protein  unfolding,  disrupts  electrostaGc  interacGons  

Ammonium  Sulfate    Strengthens  hydrophobic  interacGons  

Page 5: Multimodal Chromatography

• Background  • Mixed  Mode  Chromatography  • Mobile  Phase  Modulators  

• Characteriza2on  of  Protein  Binding    •  Linear  salt  gradient  elu2on  studies  •  log  k’  vs.  log  salt  concentraGon  plots  

• Enhancing  purificaGon  through  modulator  washes  • During  Capture  step  • During  Polishing  step  •  Process  impact  

Page 6: Multimodal Chromatography

•  Resin:  Capto  MMC  •  Modulator  added  to  equilibraGon,  wash  and  eluGon  buffers  •  Products  eluted  with  a  linear  NaCl  gradient  

•  Model  proteins:  •  RNase  (pI  8.9)  •  Lysozyme  (pI  9.6)  •  mAb1  •  mAb2  •  mAb3  

•  mAb4              

•  Mobile  phase  modifiers:  •  Ethylene  glycol  •  Urea  •  Arginine  •  Sodium  Thiocyanate  •  Ammonium  sulfate    

Page 7: Multimodal Chromatography

357 312 221 249 202

0

No modulator

5% ethylene glycol

50mM arginine

50mM sodium

thiocyanate

1M urea 1M ammonium

sulfate

Elu

tion

[NaC

l] (m

M) RNase

2,217 1,862 1,766 1,981 1,248

2,500

No modulator

5% ethylene glycol

50mM arginine

50mM sodium

thiocyanate

1M urea 1M ammonium

sulfate

Elu

tion

[NaC

l] (m

M) Lysozyme

1,482 1,602 847 962 916

1,800

No modulator

5% ethylene glycol

50mM arginine

50mM sodium

thiocyanate

1M urea 1M ammonium

sulfate

Elu

tion

[NaC

l] (m

M) mAb4

∞ 300 296 198 136 235

400

No modulator

5% ethylene glycol

50mM arginine

50mM sodium

thiocyanate

1M urea 1M ammonium

sulfate

Elu

tion

[NaC

l] (m

M) mAb3

314 304 209 132 237

400

No modulator

5% ethylene glycol

50mM arginine

50mM sodium

thiocyanate

1M urea 1M ammonium

sulfate

Elu

tion

[NaC

l] (m

M) mAb2

∞ 1,219 1,145 824 795 809

2,500

No modulator

5% ethylene glycol

50mM arginine

50mM sodium

thiocyanate

1M urea 1M ammonium

sulfate

Elu

tion

[NaC

l] (m

M) mAb1

∞ = target protein did not elute during NaCl gradient

Page 8: Multimodal Chromatography

•  AnGbodies  behave  differently  •  In  absence  of  modulator  

»  mAb2,  mAb3  –  low  salt  (~300mM)  »  mAb1,  mAb4  –  high  salt  (~1.5M)  

•  Modulator  with  largest  effect  »  mAb1,  mAb2,  mAb3  –  sodium  thiocyanate  »  mAb4  –  arginine    

•  Lysozyme  requires  highest  NaCl  for  eluGon  •  RNase  does  not  bind  in  the  presence  of  1M  (NH4)2SO4  

•  All  other  proteins  tested  irreversibly  bind  in  1M  (NH4)2SO4  

Page 9: Multimodal Chromatography
Page 10: Multimodal Chromatography

•  As  pH  approaches  pI,  retenGon  decreases  •  Lysozyme  does  not  elute  in  absence  of  modulator  at  pH  6.0  •  AnGbodies  behave  more  similarly  as  pH  approaches  pI  

Page 11: Multimodal Chromatography

• Background  • Mixed  Mode  Chromatography  • Mobile  Phase  Modulators  

• Characteriza2on  of  Protein  Binding    •  Linear  salt  gradient  eluGon  studies  •  log  k’  vs.  log  salt  concentra2on  plots  

• Enhancing  purificaGon  through  modulator  washes  • During  Capture  step  • During  Polishing  step  •  Process  impact  

Page 12: Multimodal Chromatography

•  Protein  retenGon  under  linear  loading  condiGons  is  dependent  on  the  thermodynamics  of  the  interacGon  between  the  protein  and  the  staGonary  phase  

log K = (- ΔG°es / 2.3RT) + (-ΔG°hΦ / 2.3RT)

∆Ges = Gibbs free energies for retention by electrostatic interactions ∆GhΦ = Gibbs free energies for retention by hydrophobic interactions T = the absolute temperature R = the universal gas constant

k’ = ΦK

Retention factor (k’) relates to K by,

where Φ is the ratio of stationary and mobile phase volumes

Page 13: Multimodal Chromatography

•  This  relaGonship  was  further  described  by  Melander  et.  al  to  describe  the  dependency  of  the  linear  retenGon  factor  on  a  mixed  mode  sorbent  as  a  funcGon  of  salt  concentraGon  as:  

log k’ = A – Blog(csalt) + C(csalt) where csalt is the mobile phase salt concentration in molar units and A, B and C are constants

The  retenGon  factor  under  isocraGc  condiGons  is  represented  by:  

k’ = tr – tm /tm  tm  =  Gme  for  mobile  phase  to  pass  through  column  tr  =  target  protein  retenGon  Gme  

 

Melander, W.; El Rassi, Z.; Horvath, Cs. Journal of Chromatography, 469, 3-27, 1989.

Page 14: Multimodal Chromatography

•  This  relaGonship  was  further  described  by  Melander  et.  al  to  describe  the  dependency  of  the  linear  retenGon  factor  on  a  mixed  mode  sorbent  as  a  funcGon  of  salt  concentraGon  as:  

log k’ = A – Blog(csalt) + C(csalt) where csalt is the mobile phase salt concentration in molar units and A, B and C are constants

The  retenGon  factor  under  isocraGc  condiGons  is  represented  by:  

k’ = tr – tm /tm  tm  =  Gme  for  mobile  phase  to  pass  through  column  tr  =  target  retenGon  Gme  

 

Melander, W.; El Rassi, Z.; Horvath, Cs. Journal of Chromatography, 469, 3-27, 1989.

•  ElectrostaGc  interacGons  predominate:  a  linear  relaGonship  is  expected  between  log  k’ vs  log[NaCl]  

•  Hydrophobic  interacGons  predominate:  a  linear  relaGonship  is  expected  unGl  a  minimum  is  reached  at  which  point  further  increases  in  salt  result  in  increased  retenGon  

Page 15: Multimodal Chromatography

•  RetenGon  factors  (k’)  were  determined  for    »  mAb1  »  RNase  »  Lysozyme  

•  Mobile  phase  modulators  tested  »  No  modulator  »  1M  Urea  »  50mM  Arginine  »  5%  Ethylene  Glycol  

Page 16: Multimodal Chromatography

•  RNase »  electrostatic interactions »  No effect from urea or ethylene glycol

•  Lysozyme »  hydrophobic and electrostatic interactions »  urea has largest effect

•  mAb1 »  driven by electrostatic interactions, hydrophobic contribution »  Urea and arginine have the largest effect

 

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

2.10 2.30 2.50 2.70

Log

k'

Log [NaCl]

mAb1

All experiments performed at pH 7.0

-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

1.50 2.00 2.50

Log

k'

Log [NaCl]

RNase

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

2.60 3.10 3.60 L

og k

'

Log [NaCl]

Lysozyme

¿ baseline � 1M urea ¢ 5% ethylene glycol p 50mM arginine

Page 17: Multimodal Chromatography

• Background  • Mixed  Mode  Chromatography  • Mobile  Phase  Modulators  

• CharacterizaGon  of  Protein  Binding    •  Linear  salt  gradient  eluGon  studies  •  log  k’  vs.  log  salt  concentraGon  plots  

• Enhancing  purifica2on  through  modulator  washes  • During  Capture  step  • During  Polishing  step  •  Process  impact  

Page 18: Multimodal Chromatography

•  IncorporaGon  of  modulators  into  process  can  help  increase  selecGvity  and  purity  of  product  

• CombinaGons  of  modulators  can  further  enhance  process  step  

• Goal:  UGlize  mobile  phase  modulators  to  decrease  HCP  levels  during  Capto  MMC  process  step  for  anGbody  purificaGon  

Page 19: Multimodal Chromatography

•  Case  Study:    »  Target  molecule:  E.  coli  derived  

recombinant  protein  »  Process  step:  Phenyl  Sepharose  FF  »  Ini4al  product  yield:  88.8%    »  Result:    

Individual  modulators  showed  some  selecGvity  enhancement  but  also  product  loss  

A  combinaGon  of  urea,  sodium  thiocyanate  and  glycerol  in  the  wash  step  increased  product  purity  to  >95%  

Shukla AA, et al., 2002. Biotechnol Prog 18: 556–564.

Page 20: Multimodal Chromatography

• Background  • Mixed  Mode  Chromatography  • Mobile  Phase  Modulators  

• CharacterizaGon  of  Protein  Binding    •  Linear  salt  gradient  eluGon  studies  •  log  k’  vs.  log  salt  concentraGon  plots  

• Enhancing  purifica2on  through  modulator  washes  • During  Capture  step  • During  Polishing  step  •  Process  impact  

Page 21: Multimodal Chromatography

0.50  

0.70  

0.90  

1.10  

1.30  

1.50  

0.0%   10.0%   20.0%   30.0%   40.0%   50.0%   60.0%   70.0%   80.0%   90.0%   100.0%  

Normalized

 HCP

 

Recovery  

HCP  vs.  Recovery  aFer  Intermediate  Wash  for  Capto  MMC  Capture  

baseline

Page 22: Multimodal Chromatography

• Background  • Mixed  Mode  Chromatography  • Mobile  Phase  Modulators  

• CharacterizaGon  of  Protein  Binding    •  Linear  salt  gradient  eluGon  studies  •  log  k’  vs.  log  salt  concentraGon  plots  

• Enhancing  purifica2on  through  modulator  washes  • During  Capture  step  • During  Polishing  step  •  Process  impact  

Page 23: Multimodal Chromatography

0.40  

0.50  

0.60  

0.70  

0.80  

0.90  

1.00  

1.10  

0.0%   10.0%   20.0%   30.0%   40.0%   50.0%   60.0%   70.0%   80.0%   90.0%   100.0%  

Normalized

 HCP

 

Recovery  

HCP  vs.  Recovery  aFer  Intermediate  Wash  for  Capto  MMC  Polishing  

baseline

Page 24: Multimodal Chromatography

• Background  • Mixed  Mode  Chromatography  • Mobile  Phase  Modulators  

• CharacterizaGon  of  Protein  Binding    •  Linear  salt  gradient  eluGon  studies  •  log  k’  vs.  log  salt  concentraGon  plots  

• Enhancing  purifica2on  through  modulator  washes  • During  Capture  step  • During  Polishing  step  •  Process  impact  

Page 25: Multimodal Chromatography

•  Inclusion  of  an  intermediate  wash  using  Tris,  0.1M  NaCl,  50mM  arginine,  5%  ethylene  glycol,  pH  7.0  resulted  in  2-­‐fold  lower  HCP  levels  when  compared  to  process  where  a  modulator  was  not  uGlized  

Page 26: Multimodal Chromatography

•  In  depth  studies  have  afforded  us  an  understanding  of  how  modulators  affect  different  molecules  •  Despite  similar  class  of  molecules,  anGbodies  behave  differently  with  Capto  MMC  ligand  

• We  have  uGlized  mixed  mode  chromatography  to  improve  product  purity  and  maintain  process  step  yield  •  IncorporaGon  of  a  process  step  uGlizing  a  modulator  wash                                                          can  improve  overall  process  HCP  clearance  

•  At  KBI  Biopharma  we  have  developed  several  downstream                        processes  and  manufactured  biopharmaceuGcal  products  where                                                      modulator  washes  on  a  mixed  mode  resin  have  significantly                              contributed  to  process  HCP  clearance  

»  Effec4ve  for  both  molecules  derived  from  mammalian  and  microbial                                                              cell  culture  processes  

Page 27: Multimodal Chromatography

Pre-Clinical Phase I Phase II Phase III

FIH Process •  Deliver clinical process

quickly •  Platform process •  Clinical Supply

Submission & Approval

Lifecycle management

Commercial Process •  Deliver manufacturing process for

registrational trials and market •  Design keeping large-scale manufacturing

in mind •  Improve productivity, efficiency, robustness,

manufacturability, COGs •  Analytical characterization and method

development

Process Characterization and Validation •  Develop IPC strategy through understanding of process inputs and

outputs (design space) •  Scale-down characterization and validation studies •  Large-scale process validation to demonstrate process consistency •  BLA preparation •  Supporting documents for licensure inspections •  Post-commercial process improvements (CI) •  Post-commercial process monitoring

FIH process Commercial process

Gottschalk U., Konstantinov K., Shukla A. Nature Biotechnology, 30(6), 489-491, 2012

Process Development

Process Validation

Process Monitoring &

Improvement

BLA &

PAI

Manufacturing for Tox

Clinical Manufacturing

Commercial Process

Development

Process Characterization

Page 28: Multimodal Chromatography

Protein: protein interactions P

rote

in: r

esin

inte

ract

ions

Modulator washes can augment protein:protein interactions and/or protein:resin interactions

• Mixed  mode  chromatography  is  advantageous  because  of  its  increased  selecGvity  by  exploiGng  mulGple  chemical  properGes  of  target  protein  

Page 29: Multimodal Chromatography

•  Abhinav  Shukla,  Ph.D.  •  Sigma  Mostafa,  Ph.D.  •  Cartney  Barringer  •  KBI  Process  Development  Team  

Work available online ahead of print in Journal of Chromatography A Wolfe, et al., J. Chromatogr. A (2014), http://dx.doi.org/10.1016/j.chroma.2014.02.086