56
ωοτϫʔΫʹΔӟͷ৴ݯਪఆ๏ ژۀେӃཧڀݚՊ ௨৴ใઐ ߈2015 12 4 ཧਓηϛφʔ 1 / 56

Tetsunao Matsuta

  • Upload
    suurist

  • View
    482

  • Download
    0

Embed Size (px)

Citation preview

  • 2015 12 4

    1 / 56

  • 1.

    2.

    3.

    4.

    2 / 56

  • 1.

    3 / 56

  • 4 / 56

  • 5 / 56

  • John Snow

    1854616

    John Snow

    :

    6 / 56

  • 7 / 56

  • 1.

    8 / 56

  • G :V(G) : G

    E(G) : G(i, j) E(G) : i j

    9 / 56

  • t 0 F (t)

    F (t) = 1 et

    F

    10 / 56

  • t tt

    (1 t)t

    t

    t 0

    limt0

    (1 t)t

    t = et

    11 / 56

  • {(i,j)}(i,j)E : F

    (Susceptible-infected (SI) model)

    0 v1

    v v v (v,v)

    SIS model12 / 56

  • S(G) : GGn : ( ) n

    G

    G Gn S(G)v1 V(Gn) SI model

    13 / 56

  • : S(G) V(G) :Cn(, v1) : v1

    Cn(, v1) =

    GnS(G)

    Pn(Gn|v1) Pr{(Gn) = v1}

    Pn(Gn|v) v nGn

    14 / 56

  • = Gn S(G) V(Gn)

    [Shah and Zaman, 2011]

    Gn S(G)

    v = argmaxvV(Gn)

    Pn(Gn|v)

    2

    Pn(Gn|v)

    15 / 56

  • 1.

    16 / 56

  • N (v) : G vB(V) : V

    B(V) !{

    vVN (v)

    }\V

    Pn(v1) : v1 n

    Pn(v1) !{vn Vn : vi B({v1, , vi1})

    }

    vn = (v1, v2, , vn) Vn = V V V n

    Pn(v1, Gn) : V(Gn) Pn(v1)

    Pn(v1, Gn) !{vn Pn(v1) : V(Gn) = {v1, v2, , vn}

    }

    17 / 56

  • N (1) = {2, 3, 4}B({1, 2}) = {3, 4, 5, 6}

    P2(2) = {(2, 1), (2, 5), (2, 6)}P3(2) = {(2, 1, 4), (2, 1, 3), (2, 1, 5), (2, 1, 6),

    (2, 5, 1), (2, 5, 6), (2, 6, 1), (2, 6, 5)}P3(2, Gn) = {(2, 5, 6), (2, 6, 5)}

    18 / 56

  • Regular Tree

    : Regular Tree

    19 / 56

  • Vi : i

    Pr{V1 = v1} = 1

    v2 B({v1})

    Pr{V2 = v2|V1 = v1} = Pr{(v1,v2) = minvB({v1})

    {(v1,v)}}

    =1

    |B({v1})|20 / 56

  • vn1 P(v1) vn B({v1, , vn1})

    Pr{Vn = vn|V n1 = vn1} =1

    |B({v1, , vn1})|

    Pr{ > s+ t| > s} = Pr{ > t}21 / 56

  • (v) : v

    |B({v1})| = (v1)|B({v1, v2})| = |B({v1})| 1 + (v2) 1

    = (v1) + ((v2) 2)|B({v1, v2, v3})| = |B({v1, v2})| 1 + (v3) 1

    = (v1) + ((v2) 2) + ((v3) 2)

    |B({v1, , vn})| = (v1) +n

    i=2

    ((vi) 2)22 / 56

  • Pn(Gn|v1) = Pr{Gn V n |v1}

    =

    vnP(v1,Gn)

    Pr{V n = vn}

    =

    vnP(v1,Gn)

    n

    k=2

    1

    |B({v1, , vk1})|

    =

    vnP(v1,Gn)

    n

    k=2

    1

    (v1) +k

    i=2((vi) 2)

    !

    vnP(v1,Gn)

    p(vn)

    23 / 56

  • Regular Tree

    argmaxvV(Gn)

    Pn(Gn|v) = argmaxvV(Gn)

    vnP(v,Gn)

    n

    k=2

    1

    +k

    i=2( 2)

    = argmaxvV(Gn)

    |P(v,Gn)|

    ! argmaxvV(Gn)

    R(v,Gn)

    argmaxvV(Gn)

    R(v,Gn) O(n)

    [Shah and Zaman, 2011]

    24 / 56

  • Regular Tree

    [Dong et al., 2013]

    ML v1 V(G)

    Cn(ML, v1) =

    12n1

    ( n1(n1)/2

    )if = 2,

    14 +

    34

    12n/2+1 if = 3,

    1 (12PPolya(n/2) +

    x>n/2PPolya(x)

    )if 4

    PPolya(x) =

    (n 1x

    )1(2,x)( 1)(2,n1x)

    (2,n1)

    x(a,b) = x(x+ a)(x+ 2a) (x+ (b 1)a)

    25 / 56

  • 100 200 300 400 5000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    n

    Correctprob.

    " 2

    " 3

    " 4

    " 5

    26 / 56

  • [Shah and Zaman, 2012]

    = 2 v1 V(G)

    Cn(ML, v1) =

    (1n

    )

    3

    limn

    Cn(ML, v1) = I1/2(

    1

    2 , 1 2

    ) ( 1)

    Ix(a, b)

    Ix(a, b) !(a+ b)

    (a)(b)

    x

    0ta1(1 t)b1dt,

    ()

    27 / 56

  • 50 100 150 2000.300

    0.302

    0.304

    0.306

    0.308

    lim

    Cn

    [Shah and Zaman, 2012]

    lim

    limn

    Cn(ML, v1) = 1 ln 2 0.3069

    28 / 56

  • regular tree[Shah and Zaman, 2011]

    v = argmaxvV(Gn)

    R(v,Gn)p(vnBFS(v))

    vnBFS(v) v Gn

    vn P(v,Gn) p(vn)

    29 / 56

  • [Shah and Zaman, 2011]

    v = argmaxvV(Gn)

    R(v, TBFS(v))p(vnBFS(v))

    TBFS(v) v Gn

    vn P(v,Gn) p(vn)

    30 / 56

  • : Small-World Network

    5000 Small-world network 400

    ) 2%[Shah and Zaman, 2011]

    31 / 56

  • : Scale-Free Network

    5000 scale-free netowrk 400

    5% [Shah and Zaman, 2011]32 / 56

  • 33 / 56

  • 2.

    34 / 56

  • :

    2

    35 / 56

  • regulartree

    36 / 56

  • Dn(d) : v1 v d

    Dn(d) ! Pr{V

    {v(d)1 , v

    (d)2 , v

    (d)(1)d1

    }}

    V :{v(d)1 , , v

    (d)(1)d1

    }: v1 d( 1)

    ( ( 1)d1 )

    Dn(0) = Cn(ML, v1)

    37 / 56

  • 1

    1[k

    l

    ]! (k 1)

    [k 1l

    ]+

    [k 1l 1

    ]

    xk = x(x+ 1)(x+ 2) (x+ k 1)

    xk =n

    l=0

    [k

    l

    ]xl

    1

    s(k, l) ! (1)kl[k

    l

    ]

    xk = x(x 1)(x 2) (x k + 1)

    xk =n

    l=0

    s(k, l)xl

    38 / 56

  • = 3

    [Matsuta and Uyematsu, 2014]

    d 1 n 3

    Dn(d) = 3 2d1(n+1)/2

    k=d+1

    2

    k + 1

    ((n+3)/2k+1

    )(n+1k+1

    ) (1)d+k

    (k 1)!

    d

    l=1

    s(k, l)

    n 2

    Dn(d) = 3 2d1n/2+1

    k=d+1

    2

    k + 1

    (n/2+1k+1

    )+ n2(n+2)

    (n/2+1k

    )

    (n+1k+1

    ) (1)d+k

    (k 1)!

    d

    l=1

    s(k, l)

    39 / 56

  • = 3

    50 100 150 2000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    n

    DistanceProb.

    d ! 0

    d ! 1

    d ! 2

    d ! 3

    d ! 4

    d ! 5

    40 / 56

  • = 3

    [Matsuta and Uyematsu, 2014]

    d 2

    limn

    Dn(d)

    = 3 2d1(1)d(

    d

    l=1

    (1)l(lnl 2

    l! 2 +

    l

    m=0

    (ln 2)m

    m!

    )+

    1

    4

    )

    !

    !

    !

    !

    !! !

    0 1 2 3 4 5 60.0

    0.1

    0.2

    0.3

    0.4

    0.50 1 2 3 4 5 6

    d

    DistanceProb.

    41 / 56

  • = 3

    !

    !

    !

    !! ! !

    0 1 2 3 4 5 60.0

    0.2

    0.4

    0.6

    0.8

    1.00 1 2 3 4 5 6

    d

    CumulativeProb.

    3

    d=0

    limn

    Dn(d) 0.9676.

    42 / 56

  • 3

    [Matsuta and Uyematsu, 2014]

    d 1 3 m N0 lim

    nDn(d) f(, d,m) e2(3 +m)24m

    f(, d,m) !( 1)d1m

    k=d+1

    p(, d, k)

    (I1/2

    (k 1 + 1

    2 , 1 2

    )

    ( 1)I1/2(k 1 + 1

    2 ,1

    2

    ))

    p(, d, k) ! 2( 2)d

    (1

    2

    )k1

    (2

    2

    )k d1k2

    ( 1 2

    )

    dk(x) !

    1j1

  • = 6

    m = 35 f(, d, 35)

    limn

    Dn(d) f(, d,m) e2(3 +m)24m 1.3075 107

    !

    !

    !

    !

    ! ! !

    0 1 2 3 4 5 60.0

    0.1

    0.2

    0.3

    0.4

    0.50 1 2 3 4 5 6

    d

    DistanceProb.

    44 / 56

  • = 6

    !

    !

    !

    ! ! ! !

    0 1 2 3 4 5 60.0

    0.2

    0.4

    0.6

    0.8

    1.00 1 2 3 4 5 6

    d

    CumulativeProb.

    3

    d=0

    limn

    Dn(d) limn

    Cn(ML, v1) +3

    d=1

    f(6, d, 35)

    0.9854.45 / 56

  • 2.

    46 / 56

  • 47 / 56

  • 3.

    48 / 56

  • [Dong et al., 2013]

    Regular tree

    Polya

    49 / 56

  • SIR[Zhu and Ying, 2013]

    Susceptible-Infected-Recovered model: SI + R

    (Recovered)

    sample pathbased detection

    Regular tree

    50 / 56

  • [Prakash et al., 2012]

    MDL (Minimum description length)

    51 / 56

  • [Wang et al., 2014]

    Gn L

    Regular tree

    L 1L 2 1

    52 / 56

  • [Luo et al., 2014]

    Sample path based detection

    Regular tree O(n)

    O(n3)

    Regular tree

    53 / 56

  • 4.

    54 / 56

  • regular tree

    Regular tree

    55 / 56

  • [Dong et al., 2013] W. Dong, W. Zhang, and C. W. Tan, Rooting out the rumor culpritfrom suspects, ISIT 2013, pp.26712675, 7-12 July 2013.[Kuba and Prodinger, 2010] M. Kuba and H. Prodinger, A note on Stirling series,Integers, vol. 10, no. 4, pp. 393406, 2010.[Luo et al., 2014] W. Luo, W. P. Tay, and M. Leng, How to identify an infection sourcewith limited observations, IEEE Journal of Selected Topics in Signal Processing, vol. 8,no. 4, pp. 586597, Aug. 2014[Matsuta and Uyematsu, 2014] T. Matsuta and T. Uyematsu, Probability distributions ofthe distance between the rumor source and its estimation on regular trees, SITA 2014,pp. 605-610, Dec. 2014.[Prakash et al., 2012] B. A. Prakash, J. Vreeken, and C. Faloutsos, Spotting culprits inepidemics: How many and which ones?, ICDM 2012, pp. 1120, 10-13 Dec. 2012.[Shah and Zaman, 2011] D. Shah and T. Zaman, Rumors in a network: Whos theculprit?, IEEE Trans. Inform. Theory, vol. 57,no. 8, pp. 51635181, Aug. 2011.[Shah and Zaman, 2012] D. Shah and T. Zaman, Rumor centrality: A universal sourcedetector, SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 199210, Jun. 2012.[Steyn, 1951] H. S. Steyn, On discrete multivariate probability functions,Proc. Koninklijke Nderlandse Akademie van Wetenschappen, Ser. A, vol. 54, pp. 2330.[Wang et al., 2014] Z. Wang, W. Dong, and W. Zhang and C.W. Tan, Rumor sourcedetection with multiple observations: Fundamental limits and algorithms, ACMSIGMETRICS 2014, pp. 113, 16-20 June 2014.[Zhu and Ying, 2013] K. Zhu and L. Ying, Information source detection in the SIRmodel: A sample path based approach, ITA 2013, pp. 19, 10-15 Feb. 2013.

    56 / 56