31
Exception-enriched Rule Learning from Knowledge Graphs Mohamed Gad-Elrab 1 , Daria Stepanova 1 , Jacopo Urbani 2 , Gerhard Weikum 1 1 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Germany 2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 21 st October 2016

Exception-enrcihed Rule Learning from Knowledge Graphs

Embed Size (px)

Citation preview

Page 1: Exception-enrcihed Rule Learning from Knowledge Graphs

Exception-enriched Rule Learning from Knowledge

Graphs

Mohamed Gad-Elrab1, Daria Stepanova1, Jacopo Urbani 2, Gerhard Weikum1

1Max-Planck-Institut für Informatik, Saarland Informatics Campus, Germany

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

21st October 2016

Page 2: Exception-enrcihed Rule Learning from Knowledge Graphs

Knowledge Graphs (KGs)

2

• Huge collection of < 𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡 > triples

• Positive facts under Open World Assumption (OWA)

• Possibly incomplete and/or inaccurate

Page 3: Exception-enrcihed Rule Learning from Knowledge Graphs

Mining Rules from KGs

3

Amsterdam

isMarriedToJohn Kate

Chicago

isMarriedToBrad Anna

Berlin

hasBrother

isMarriedToDave ClaraisMarriedToBob Alice

Researcher

Berlin Football

Page 4: Exception-enrcihed Rule Learning from Knowledge Graphs

Mining Rules from KGs

4

𝑟: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← 𝑖𝑠𝑀𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜 𝑋, 𝑌 , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛(𝑌, 𝑍)

Amsterdam

isMarriedToJohn Kate

Chicago

isMarriedToBrad Anna

Berlin

hasBrother

isMarriedToDave ClaraisMarriedToBob Alice

Researcher

Berlin Football

[Galárraga et al., 2015]

Page 5: Exception-enrcihed Rule Learning from Knowledge Graphs

Mining Rules from KGs

5

𝑟: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← 𝑖𝑠𝑀𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜 𝑋, 𝑌 , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛(𝑌, 𝑍)

Amsterdam

isMarriedToJohn Kate

Chicago

isMarriedToBrad Anna

Berlin

hasBrother

isMarriedToDave ClaraisMarriedToBob Alice

Researcher

Berlin Football

1 2

Page 6: Exception-enrcihed Rule Learning from Knowledge Graphs

Our Goal

6

𝑟: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← 𝑖𝑠𝑀𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜 𝑋, 𝑌 , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑌, 𝑍 , 𝑛𝑜𝑡 𝑖𝑠𝐴(𝑋, 𝑟𝑒𝑠)

Amsterdam

isMarriedToJohn Kate

Chicago

isMarriedToBrad Anna

Berlin

hasBrother

isMarriedToDave ClaraisMarriedToBob Alice

Researcher

Berlin Football

1 2

Page 7: Exception-enrcihed Rule Learning from Knowledge Graphs

Problem Statement

• Quality-based theory revision problem

• Given• Knowledge graph 𝐾𝐺

• Set of Horn rules 𝑅𝐻

• Find the nonmonotonic revision 𝑅𝑁𝑀 of 𝑅𝐻

• Maximize top-k avg. confidence

• Minimize conflicting prediction

7

Page 8: Exception-enrcihed Rule Learning from Knowledge Graphs

Problem Statement

• Quality-based theory revision problem

• Given• Knowledge graph 𝐾𝐺

• Set of Horn rules 𝑅𝐻

• Find the nonmonotonic revision 𝑅𝑁𝑀 of 𝑅𝐻

• Maximize top-k avg. confidence

• Minimize conflicting prediction

8

Unknown

Page 9: Exception-enrcihed Rule Learning from Knowledge Graphs

Problem Statement: Conflicting Predictions

• Defining conflicts

• Measuring conflicts (auxiliary rules)

9

𝑟2: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑛𝑜𝑡 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑟2𝑎𝑢𝑥: 𝑛𝑜𝑡_𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑅 = 𝑟1: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← 𝑖𝑠𝐺𝑎𝑚𝑒 𝑋 , 𝑖𝑠𝐵𝑎𝑠𝑒𝑑𝑂𝑛𝐽𝑃𝐴𝑛𝑖𝑚𝑒 (𝑋)𝑟2: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑛𝑜𝑡 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

{𝑖𝑠𝐺𝑎𝑚𝑒 𝑎 , 𝑖𝑠𝐵𝑎𝑠𝑒𝑑𝑂𝑛𝐽𝑃𝐴𝑛𝑖𝑚𝑒 𝑎 , ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑎 , 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴 𝑎 }

Output: {(𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑎 , 𝑟2: 𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑎 )}

𝑎 =

Page 10: Exception-enrcihed Rule Learning from Knowledge Graphs

Problem Statement: Conflicting Predictions

• Defining conflicts

• Measuring conflicts (auxiliary rules)

10

𝑟2: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑛𝑜𝑡 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑟2𝑎𝑢𝑥: 𝑛𝑜𝑡_𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑅 = 𝑟1: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← 𝑖𝑠𝐺𝑎𝑚𝑒 𝑋 , 𝑖𝑠𝐵𝑎𝑠𝑒𝑑𝑂𝑛𝐽𝑃𝐴𝑛𝑖𝑚𝑒 (𝑋)𝑟2: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑛𝑜𝑡 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

{𝑖𝑠𝐺𝑎𝑚𝑒 𝑎 , 𝑖𝑠𝐵𝑎𝑠𝑒𝑑𝑂𝑛𝐽𝑃𝐴𝑛𝑖𝑚𝑒 𝑎 , ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑎 , 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴 𝑎 }

Output: {(𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑎 , 𝑟2: 𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑎 )}

𝑎 =

Page 11: Exception-enrcihed Rule Learning from Knowledge Graphs

Problem Statement: Conflicting Predictions

• Defining conflicts

• Measuring conflicts (auxiliary rules)

11

𝑟2: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑛𝑜𝑡 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑟2𝑎𝑢𝑥: 𝑛𝑜𝑡_𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑅 = 𝑟1: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← 𝑖𝑠𝐺𝑎𝑚𝑒 𝑋 , 𝑖𝑠𝐵𝑎𝑠𝑒𝑑𝑂𝑛𝐽𝑃𝐴𝑛𝑖𝑚𝑒 (𝑋)𝑟2: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑛𝑜𝑡 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

{𝑖𝑠𝐺𝑎𝑚𝑒 𝑎 , 𝑖𝑠𝐵𝑎𝑠𝑒𝑑𝑂𝑛𝐽𝑃𝐴𝑛𝑖𝑚𝑒 𝑎 , ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑎 , 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴 𝑎 }

(𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑎 , 𝑛𝑜𝑡_𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑎 )

𝑎 =

Page 12: Exception-enrcihed Rule Learning from Knowledge Graphs

Approach Overview

Step 1• Mining Horn Rules

Step 2• Extracting Exception Witness Set (EWS)

Step 3• Constructing Candidate Revisions

Step 4• Selecting the Best Revision

12

Page 13: Exception-enrcihed Rule Learning from Knowledge Graphs

bornInUSA livesInUSA stateless emigrant singer poet

p1 ✓ ✓

p2 ✓ ✓

p3 ✓ ✓

p4 ✓ ✓ ✓

p5 ✓ ✓ ✓

p6 ✓ ✓

p7 ✓ ✓

p8 ✓ ✓ ✓ ✓

p9 ✓ ✓ ✓

p10 ✓ ✓ ✓ ✓

p11 ✓ ✓ ✓

Step 1: Mining Horn Rules

13

𝒓𝒊: 𝒍𝒊𝒗𝒆𝒔𝑰𝒏𝑼𝑺𝑨 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)

No

rmal

Ab

-no

rmal

Page 14: Exception-enrcihed Rule Learning from Knowledge Graphs

bornInUSA livesInUSA stateless emigrant singer poet

p1 ✓ ✓

p2 ✓ ✓

p3 ✓ ✓

p4 ✓ ✓ ✓

p5 ✓ ✓ ✓

p6 ✓ ✓

p7 ✓ ✓

p8 ✓ ✓ ✓ ✓

p9 ✓ ✓ ✓

p10 ✓ ✓ ✓ ✓

p11 ✓ ✓ ✓

𝒓𝒊: 𝒍𝒊𝒗𝒆𝒔𝑰𝒏𝑼𝑺𝑨 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)

No

rmal

Ab

-no

rmal

Step 2: Extracting Exception Witness Set (EWS)

14𝐸𝑊𝑆𝑖 = {𝑒𝑚𝑖𝑔𝑟𝑎𝑛𝑡 𝑋 , 𝑝𝑜𝑒𝑡 𝑋 }

Page 15: Exception-enrcihed Rule Learning from Knowledge Graphs

Step 3: Constructing Candidate Revisions

• Horn rules

• Rule revisions

15

𝑟1: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛𝑈𝑆𝐴 𝑋 ← 𝑏𝑜𝑟𝑛𝐼𝑛𝑈𝑆𝐴 𝑋 , 𝑛𝑜𝑡 𝑝𝑜𝑒𝑡 𝑋𝑟1: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛𝑈𝑆𝐴 𝑋 ← 𝑏𝑜𝑟𝑛𝐼𝑛𝑈𝑆𝐴 𝑋 , 𝑛𝑜𝑡 𝑒𝑚𝑖𝑔𝑟𝑎𝑛𝑡 𝑋…

𝑅 = 𝑟1: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛𝑈𝑆𝐴 𝑋 ← 𝑏𝑜𝑟𝑛𝐼𝑛𝑈𝑆𝐴(𝑋)𝑟2: 𝑒𝑚𝑖𝑔𝑟𝑎𝑛𝑡 𝑋 ← 𝑠𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠(𝑋)

𝐸𝑊𝑆 = {𝑝𝑜𝑒𝑡 𝑋 , 𝑒𝑚𝑖𝑔𝑟𝑎𝑛𝑡 𝑋 ,… }𝐸𝑊𝑆 = {𝑒1 𝑋 , 𝑒2(𝑋), … }

Page 16: Exception-enrcihed Rule Learning from Knowledge Graphs

Step 4: Selecting the Best Revision

Finding globally best revision is expensive!

• Naïve ranker• For each rule, pick the revision that maximizes confidence

• Works in isolation from other rules

• Partial materialization ranker• 𝐾𝐺s are incomplete!

• Augment the original 𝐾𝐺 with predictions of other rules

• Rank revisions on avg. confidence of the rule and its auxiliary.

16

Page 17: Exception-enrcihed Rule Learning from Knowledge Graphs

• Partial materialization

Ranking Rule’s Revisions

17

bornInUSA livesInUSA stateless emigrant singer poet

p1 ✓ ✓

p2 ✓ ✓

p3 ✓ ✓

p4 ✓ ✓ ✓

p5 ✓ ✓ ✓

p6 ✓ ✓

p7 ✓ ✓

p8 ✓ ✓ ✓ ✓

p9 ✓ ✓ ✓

p10 ✓ ✓ ✓ ✓

p11 ✓ ✓ ✓

𝒓𝒊: 𝒍𝒊𝒗𝒆𝒔𝑰𝒏𝑼𝑺𝑨 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)

No

rmal

Ab

-no

rmal

Page 18: Exception-enrcihed Rule Learning from Knowledge Graphs

• Partial materialization

bornInUSA livesInUSA stateless emigrant singer poet

p1 ✓ ✓

p2 ✓ ✓

p3 ✓ ✓

p4 ✓ ✓ ✓ ✓

p5 ✓ ✓ ✓ ✓

p6 ✓ ✓ ✓

p7 ✓ ✓ ✓

p8 ✓ ✓ ✓ ✓

p9 ✓ ✓ ✓ ✓ ✓

p10 ✓ ✓ ✓ ✓

p11 ✓ ✓ ✓ ✓

𝒓𝒊: 𝒍𝒊𝒗𝒆𝒔𝑰𝒏𝑼𝑺𝑨 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)

No

rmal

Ab

-no

rmal

Ranking Rule’s Revisions

18

Page 19: Exception-enrcihed Rule Learning from Knowledge Graphs

Ranking Rule’s Revisions

• Ordered partial materialization ranker• Only rules with higher quality

• Ordered weighted partial materialization ranker• KG fact weight = 1

• Predicted facts inherit their weights from the rules

19

Page 20: Exception-enrcihed Rule Learning from Knowledge Graphs

Experiments

• Ruleset quality

20*Higher is better

0.60

0.65

0.70

0.75

0.80

20 40 60 80 100

Avg

. Co

nfi

den

ce

Top-K (%) Rules

YAGO3

Horn Naive Ordered & Weighted PM

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

20 40 60 80 100A

vg. C

on

fid

ence

Top-K (%) Rules

IMDB

Horn Naive Ordered & Weighted PM

Facts 10M 2MRules 10K 25K

Page 21: Exception-enrcihed Rule Learning from Knowledge Graphs

Experiments

• Predictions consistency

21*Lower is better

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

200 400 600 800 1000

Co

nfl

ict

Rat

io

Top-K Rules

YAGO3

Naive Ordered & Weighted PM

0

0.1

0.2

0.3

0.4

0.5

200 400 600 800 1000C

on

flic

t R

atio

Top-K Rules

IMDB

Naive Ordered & Weighted PM

Page 22: Exception-enrcihed Rule Learning from Knowledge Graphs

Experiments

• Examples

22

𝑖𝑠𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛(𝑋) ← 𝑖𝑠𝐼𝑛𝐴𝑢𝑠𝑡𝑟𝑖𝑎(𝑋), 𝑖𝑠𝐼𝑛𝐼𝑡𝑎𝑙𝑦 𝑋 , 𝑛𝑜𝑡 𝑖𝑠𝑅𝑖𝑣𝑒𝑟 (𝑋)

𝑖𝑠𝑃𝑜𝑙𝑖𝑡𝑂𝑓𝑈𝑆𝐴 𝑋 ← 𝑏𝑜𝑟𝑛𝐼𝑛𝑈𝑆𝐴 𝑋 , 𝑖𝑠𝐺𝑜𝑣 𝑋 , 𝑛𝑜𝑡 𝑖𝑠𝑃𝑜𝑙𝑖𝑡𝑃𝑢𝑒𝑟𝑡𝑜𝑅𝑖𝑐𝑜(𝑋)

𝑏𝑜𝑟𝑛𝐼𝑛𝑈𝑆𝐴 𝑋 ← 𝑎𝑐𝑡𝑒𝑑𝐼𝑛𝑀𝑜𝑣𝑖𝑒 𝑋 , 𝑐𝑟𝑒𝑎𝑡𝑒𝑑𝑀𝑜𝑣𝑖𝑒 𝑋 , 𝑛𝑜𝑡 𝑤𝑜𝑛𝐹𝑖𝑙𝑚𝑓𝑎𝑟𝑒(𝑋)

Page 23: Exception-enrcihed Rule Learning from Knowledge Graphs

Summary

• Conclusion• Quality-based theory revision under OWA

• Partial materialization for ranking revisions

• Comparison of ranking methods on real life KGs

• Outlook• Extending to higher arity predicates

• Binary predicates [Tran et al., to appear ILP2016]

• Evidence from text corpora

• Exploiting partial completeness

23

Page 24: Exception-enrcihed Rule Learning from Knowledge Graphs

References

• [Angiulli and Fassetti, 2014] Fabrizio Angiulli and Fabio Fassetti. Exploiting domain knowledge to detect outliers. Data Min. Knowl. Discov., 28(2):519–568, 2014.

• [Dimopoulos and Kakas, 1995] Yannis Dimopoulos and Antonis C. Kakas. Learning non-monotonic logic programs: Learning exceptions. In Machine Learning: ECML-95, 8th European Conference on Machine Learning, Heraclion, Crete, Greece, April 25-27, 1995, Proceedings, pages 122–137, 1995.

• [Galarraga et al., 2015] Luis Galarraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast Rule Mining in Ontological Knowledge Bases with AMIE+. In VLDB Journal, 2015.

• [Law et al., 2015] Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for learning answer set programs, 2015.

• [Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello. 2006. The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7, 3 (July 2006), 499-562.

• [Suzuki, 2006] Einoshin Suzuki. Data mining methods for discovering interesting exceptions from an unsupervised table. J. UCS, 12(6):627–653, 2006.

• [Tran et al., 2016] Hai Dang Tran, Daria Stepanova, Mohamed H. Gad-Elrab, Francesca A. Lisi, Gerhard Weikum. Towards Nonmonotonic Relational Learning from Knowledge Graphs. ILP2016, London, UK, to appear.

• [Katzouris et al., 2015] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event definitions with inductive logic programming. Machine Learning, 100(2-3):555–585, 2015.

24

Page 25: Exception-enrcihed Rule Learning from Knowledge Graphs

Related Work

• Learning nonmonotonic programs• E.g., [Dimopoulos and Kakas, 1995], ILASP [Law et al., 2015],

ILED [Katzouris et al., 2015], etc.

• Outlier detection in logic programs• E.g., [Angiulli and Fassetti, 2014], etc.

• Mining exception rules• E.g., [Suzuki, 2006], etc.

25

Page 26: Exception-enrcihed Rule Learning from Knowledge Graphs

Problem Statement: Ruleset Quality

• Independent Rule Measure (𝑟𝑚)• Support: 𝑠𝑢𝑝𝑝 𝐻 ← 𝐵 = 𝑠𝑢𝑝𝑝(𝐻 ∪ 𝐵)

• Coverage: c𝑜𝑣 𝐻 ← 𝐵 = 𝑠𝑢𝑝𝑝(𝐵)

• Confidence: c𝑜𝑛𝑓 𝐻 ← 𝐵 =𝑠𝑢𝑝𝑝(𝐻∪𝐵)

𝑠𝑢𝑝𝑝(𝐵)

• Lift: 𝑙𝑖𝑓𝑡 𝐻 ← 𝐵 =𝑐𝑜𝑛𝑓(𝐻←𝐵)

𝑠𝑢𝑝𝑝(𝐻)

• …

• Average Ruleset Quality

26

𝑞𝑟𝑚 𝑅𝑁𝑀, 𝐺 =

𝑟 ∈𝑅𝑁𝑀

𝑟𝑚(𝑟, 𝐺)

𝑅𝑁𝑀

Page 27: Exception-enrcihed Rule Learning from Knowledge Graphs

Problem Statement: Conflicting Predictions

• Measuring conflicts (auxiliary rules)

27

𝑟2: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑛𝑜𝑡 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑟2𝑎𝑢𝑥: 𝑛𝑜𝑡_𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐼𝑛𝐽𝑃 𝑋 ← ℎ𝑎𝑠𝐽𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑋 , 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑈𝑆𝐴(𝑋)

𝑞𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑅𝑁𝑀, 𝐺 =|{(𝑝 𝑎 , 𝑛𝑜𝑡_𝑝 𝑎 ), … }|

{𝑛𝑜𝑡_𝑝 𝑎 , … }

Page 28: Exception-enrcihed Rule Learning from Knowledge Graphs

Propositionalization

• Unary predicates

28

Binary Predicates

• hasType(enstein, scientist)

• isMarriedTo(elsa, einstein)

• bornIn(einstein, um)

Unary

• isAScientist(einstein)

• isMarriedToEinstein(elsa)

• bornInUlm(einstein)

Abstraction

• isAScientist(einstein)

• isMarriedToScientist(elsa)

• bornInGermany(einstein)

Page 29: Exception-enrcihed Rule Learning from Knowledge Graphs

Experiments

• Input

• Experiment statistics

29

YAGO3 IMDB

Input Facts 10M 2M

Horn Rules 10K 25K

Revised Rules 6K 22K

General-purpose KG Domain-specific KG (Movies)

Page 30: Exception-enrcihed Rule Learning from Knowledge Graphs

Experiments

• Predictions assessment• Run DLV on YAGO and 𝑅𝐻 then 𝑅𝑁𝑀 seperately

• Sample facts such that fact 𝑓 ∈ 𝑌𝐴𝐺𝑂𝐻\𝑌𝐴𝐺𝑂𝑁𝑀

• 73% of the sampled facts were found to be erroneous

30

checked predictions

Page 31: Exception-enrcihed Rule Learning from Knowledge Graphs

Ranking Rule’s Revisions

• Partial materialization ranker• Augment the original 𝐾𝐺 with predictions of other rules

• Rank revisions on Avg. confidence of the 𝑟 and 𝑟𝑎𝑢𝑥

31

𝑠𝑐𝑜𝑟𝑒 𝑟𝑒 , 𝐾𝐺∗ =

𝑐𝑜𝑛𝑓 𝑟𝑒 , 𝐾𝐺∗ + 𝑐𝑜𝑛𝑓(𝑟𝑒

𝑎𝑢𝑥 , 𝐾𝐺∗)

2

where 𝑟𝑒 is the rule 𝑟 with exception 𝑒 & 𝐾𝐺∗is the augmented 𝐾𝐺.