10
P-f DYNAMIC SIMULATIONS FOR OPERATION MODE TRANSFER OF A MICRO-TURBINE GENERATOR Chi-Hshiung Lin Department of Electrical Engineering Kao Yuan University Kaohsiung County, Taiwan 82151,R.O.C. Key Words: micro-turbine generator; dynamics simulation, operation mode transfer. ABSTRACT The micro-turbine generator unit is superior to the traditional synchronous generator unit in many aspects; for example, a variety of fuels (e.g. anaerobic methane) may be used. So it is deemed one of the most promising green power sources. Three modes of operation are available for the unit: island, grid-connected and multi-machine modes. To be able to operate in all three modes, it’s a better choice for the unit to adopt the P-f droop mode of control. For a unit with such a control mode, dynamic simulation analyses for operation mode transfer are made in this paper. It is shown that significant transient power disturbance will be induced when the unit is transferred from the island mode to the grid-connected mode. When two units simultaneously connect to a grid, the impact on both units will be even more serious. The degree of impact is not less than the impact on a traditional synchronous generator unit that is subjected to a three-phase-to-ground fault. 11 Journal of Technology, Vol. 23, No. 1, pp. 11-20 (2008)

02 微渦輪發電機

Embed Size (px)

Citation preview

Page 1: 02 微渦輪發電機

!"#$%&'()*+,-./012.3456

789:;<=>?@ABC;+D.E(78;9:.

FG P-fHI;JK,LMNOPQRST8UVW9:

;:XYZ;[\]^_`ab4c=>;:X+@AB;

deSfghijkZ0lmYnopdqB@dS

r/stujstvwxyz|7~

5

?YZ;[?9:;:X5

DYNAMIC SIMULATIONS FOR OPERATION MODE TRANSFER OF A MICRO-TURBINE GENERATOR

Chi-Hshiung Lin

Department of Electrical Engineering Kao Yuan University

Kaohsiung County, Taiwan 82151,R.O.C.

Key Words: micro-turbine generator; dynamics simulation, operation mode transfer.

ABSTRACT

The micro-turbine generator unit is superior to the traditional synchronous generator unit in many aspects; for example, a variety of fuels (e.g. anaerobic methane) may be used. So it is deemed one of the most promising green power sources. Three modes of operation are available for the unit: island, grid-connected and multi-machine modes. To be able to operate in all three modes, it’s a better choice for the unit to adopt the P-f droop mode of control. For a unit with such a control mode, dynamic simulation analyses for operation mode transfer are made in this paper. It is shown that significant transient power disturbance will be induced when the unit is transferred from the island mode to the grid-connected mode. When two units simultaneously connect to a grid, the impact on both units will be even more serious. The degree of impact is not less than the impact on a traditional synchronous generator unit that is subjected to a three-phase-to-ground fault.

11

Journal of Technology, Vol. 23, No. 1, pp. 11-20 (2008)

Page 2: 02 微渦輪發電機

12

!" #$%&'(

)*+,-./01()*23

4'567809:;0<=>?/@ABCDE

5FGHIJKLM1NOPQR

S<TUV()*'5WXYZA[\(

)*S]6^_`ab cd;=efgh

[ij'klmn>op qr st uv+w

x,yz()*|~M74KLR

;0<,

g()*S

]0FF)*S7 30 kW

60 kWcdS#$6F 7 % H 2 S#

&b6 350 btu/scf ¡¢£¤w¥/¦§¥

,¨©ª«¬­®h0¯°±²()*-

³´µ¶DE·¸¹º»,

1.

¼()*½¾¿ 1xÀÁÂÃ)*Ä

Å ÆbÇÈÉ ÊËRÌSÍÎÏÈÉ<

Ð8ÎÑ4 25~500 kW,

)*ÄÅÒl4ÓÔÕÖ×ØS )*SS

0ÙÚÛ×ØSÜ×#ÝvÞ#$ßn#Ý

#ÝvàáâueÑ 900ãä)*SåæÏçèä

S)*SéáÆueÑ 600êbëìÉDu

íîéïÆbÇÈÉ,ÆbÇÈÉÒl4ð

ñGRòó>Æ0bÏÈ4bñ<ÐÆ

0ueÑ4 300,ÊËRÌSÒl4 NdBFe ô

õÏÌ- 50,000 rpmï 120,000 rpmöyzàá×

ÍÎ6÷ kHz øù,ÍÎÏÈÉ<Ðú AC-DC-AC Ù

ÚûÍ× ü4ýîêÈÉÏÈ4fF

½¾ÍÎÇ[\Òlþ·É (Line Filter)

ËÉ (EMC Filter) òÈ,

2.

()*S]kl/ â²G

ÞKLR;0âÌÊËR

SÂÃüÉÈÉ 0²GÑ^S0

1/5~1/2yz6N>[Fö\*

*4 !Î"#Á$%í&[\kl

²,'Îkl#$ï"0ÏÈ'Î6 25 %~30 %

\(úÆbëì)b *+0;'Î6,- 80 %,

=./012S]-345Ï678§h9

NOx 0é:G> 10 ppm,ê;½¾7<ÞK

LR;=>,#$?6F

1

/d@A#$12 BC D¨ E¨ F¨

GH æõ+,z0I()*S½¾-ª

jJKL¾^S½¾0

(<) MÈÉNOàáÍÎPTkl> 0.05

HzQä<Ð^S>½¾ÕR_QäG

0.2 HzS^S>S½¾ÕR_QäG 0.03

Hz,

(T) ^S<ÐUV,- 10 %0WX()

*S½¾MüÉÈÉYZÌÊËR

SÞ[\yzû 50 %0[\WX]

^> 3 %0×,

(_) k[\åæ0`a7L¾^S]

0ESbcÍdäe()*S½¾üÉ

ÈÉfYZ¬·ESbcdä0ghå

æ,

(i) L¾^S]`y !-S[Ýjk&

ÏÔlm0no()*S½¾Û>êÛÈ

ÉNO6ÌÊËRS0 !pO><

T67<Ð4 1.4~2.0 pu y[qrstn

o,

(u) ÌÊËRSL¾^Sj0vä

"Ñ 1.8~2.5w 100 hpxÛ 400 kW

ÌÊËRSû6vä[a7-S0×yz,

3.

(<) ä|

()*S½¾0ä|~|- IELá

÷[1] áÓ0h()*

S|ÌÉ)*SM<ÏÈ÷

SM>ÏÌ0a×ÀüÉO4

T[\0_¬üîM@½¾4

ÛS8ÎÕÖS½¾Þ"½¾,

[2]M MatLab-Simulink-PSBü0()*

S½¾()S|))*S|

[3~7]ÌeNO#$NOÂ-eueNO

)2S üÉÈÉ)úF

MatLab-Simulink-PSBN|1ÈÉ0NOú

Q (PWM) R MKNOÉ (PI

Controller) NOüâ|mn¡¢ä£40|

¤K¥",e<|¦§5Ï|R¨û-

Page 3: 02 微渦輪發電機

!"#$ 13

©TÍΪNO[\×=|R05Ï @

|¤",

[8]«<ª¬­[2]0|e®ueNO¯|

|°¦§5Ï|R±ÈÉ0×

NOúF²T³Q(Specific Harmonic

Elimination PWM)NOR,

ý´5ü()*S½¾ä|µ

¸¹2Má|[9]¡¢¶·¸Ïȹ|

f¸<½ºä|¤[10]ò()*S

SÏȹ»7 MatLab-Simulink-PSB |]¼

½¾ |¤^¿À0äÁa[11]

)Má5ü()*S½¾ä|Â

|¤S]0¦§ ÃäÁa,

(T)

()*S½¾Û>úFÈÉòýÄ×ÏÈ

4½¾ÍÎ×ûÅÉ°ó-

±²0gh,[12]3Æ<Ç 480 V 30 kW(

)*S]ÈÉàá0ÖÈýRÕR

_*×5 2.6 %*5

67 %1 7É5±² 40 %,(ê

Q×ÉÕR)5 47 %Ê2Ëe

°S,[\Ì[¯Í±²eû

ÎT5Ϫ° 12 %0,[8]áM

ÏLÐÑA (Genetic Algorithm) OÒ|ÓNOÉ

(Fuzzy Controller) NO PWMÈÉ\_ 7É

Û 20 %Ëï 5 %,-ªÔx'

ÕÖ×S]ÕØS]0ÙsÚ±²

[13],

()*S¸=½¾ÛSTÜÝ

]<Þ^ßàá0âzÛãü

ÉÄ»-ÇK[\ª¯Í±²yz

-¦§5Ϫä²åÛæçTÜÝ]Ýj,è<

é|ê(ËSTÜÝ]0

)Sò6hë>S0Ì5Ï,

[14]ûFväÈÉòOÒ4äÉ

MìOTÜÝ]0y4väÈÉ4©

yzíÜîï7<45S eväÈ

ÉUGÑS]0 10 %ðñ"áp,[15]

)¬:òãüÉ[ðF PWM üÉMÌ

STÜÝ]'Èó-·

7<y[,

(_) 8ÎNOÉOÒ

KLR;08ÎNOÉSM©Tý×;0È

É4OÒÙÚ[16]Õ¸_d¼R

<4ôÉnNO×;ÈÉ0ÙÚ

(DC-DC ChopperõCC-VSI)T4öâÈÉ

n÷øÉ0ÙÚ (SCR INVõCompensator)_4

ùQ×;ÈÉ0ÙÚ (SPWM-VSI)NO

A)«<ª'êÛNOÈÉúS|N

O'@'8Îmn½¾ Ã|R5Ï,

[17]-û WX Sä ½¾ä

úFüýÈþ|RªáÒF0NOÉ|

RÈÉ0NOÉëNOÉORh

-5MCTGòÔO,

<ò()*S|¯8ÎNOÉOÒ

[1]-xÔ()*S|>

h|eÛ'NOÉ0OÒúFG

NO^>úGNO,

8ÎNOɪÔú AC-DC-AC IúF

AC-AC , [18]áúFÇïÇÏÈÉ

(Cycloconverter) 0ÙÚ MGNORNO'

@'8Î,

[19]áçÏÈÉ (Matrix Converter) ÙÚ=

< _à/_àá½¾6F 9 Çþ

7 úF 3 ÉÛ5S×ÏÈÎ

0.8664ûþÈ0ÒÑ_öúöGQ

(SVM) R'Î>lF0 AC-DC-AC

ÙÚ6-,

(i) 5Ï|RÈ

()*S½¾6f4F;¨6f4

;&F;?/wnS]^_c

d8ezT0NO«<ª'^f4

F;_~äÞ½¾^z_S]ä4'/

@'8ÎNO|R (P-Q Controlled Mode)f4

F;_S]~ä[[\Ga[\Qä

z_S]ä4©TÍÎ×NO|R (f-V

Controlled Mode)ycd|RxGÆNO0÷

^S]<Ð@A^_F>cdF,

[20]á<dÃnNOɹ4[\

×NOI¹48ÎNOI¹-½¾ Ã

5Ï_äfNOÈÉ`'@'8ν

¾`S]Í7¦§5Ï_I¹NOÉà

á+[ 8Fz_!¹äfûÈÉ

"äÛ P-QNO|RÏÈ4 f-VNO|R,zÃn

NOÉ`#f|Rö0@$ÏÈ4 eS

]Þ½¾ä%ÇÈ&'yz~ä41(NOm

nS]Q1wn,

=>S]KLwnÛ>S]öÇÈ&'`1(

NO mn,[21]á)S^S]0

ª*NO|R (Droop Mode)ÈÉ0NOG

Æ<Þ8Î× û6äÞS]ÇÈ

&'[\S]65Ï>¦§|R (Island

Mode) + Ã|R (Grid-connected Mode) /S

|R (Multi-machine Mode)äÎINOäf,z

ª*NO|RÞS^S]^0²4

eÍÎ@A]^©T\ÁaÕ,@Af4-

Page 4: 02 微渦輪發電機

14

Speed/Load Reference

W(xs+1)

ys+z

N V

V

V w(xs+1)

/

1 2 3 4 5

w 25 30 31.09 45 26.02

x 0 0 1.059 1.25 3.213

y 0.05 0.05 3.05 2.5 5

z 1 1 1 1 1

V FD-MAX 1.5 1.75 1.77 1.6 1.34

V FD-MIN -0.1 -0.26 -0.17 -0.1 -0.2

1 2 3 4 5

K3 0.77 0.68 0.725 0.76 0.716

T 0 0 0 0 0

a 1 1 1 1 1

b 0.05 0.05 0.05 0.05 0.2

c 1 1 1 1 1

Tf 0.4 0.2 0.2 0.2 0.1

Kf 0 0 0 0 0

ECR 0.01 0.01 0.01 0.01 0.01

TCD 0.1 0.2 0.2 0.2 0.2

af -0.299 -0.47 -0.359 -0.316 -0.396

bf 1.3 1.47 1.38 1.316 1.396

cf 1.5 0.5 0.5 0.5 0.5

[\0F;z4Á. ,

ªÔT405Ï|RÈe(

)*S|[OÈÉÛ©Tý×;`

sdO/3ª.()*S0

äÁa01fF[\5²

Á'-sdOª@A25Ï|RÈ=()

*S]03Á,

(u) ßn5Ï

545¸¹þÛ()*S]ÞKLR

S]0ßn5Ïgh[22]f¸< !"S

]Þ()*S]ßn5Ï [23][24]

)6¶#$%S]Þ()*S]ßn5ÏPTe

gh-stþ'»7()*

S]78ßn5Ïò's<9:|

² ,

<M MatLab-Simulink-PSB3()*½¾0

üâ|Â()*S| ÊËS| ÍÎQ

ȹ| [\| É| ýÄ×NO|

ÈÉ8ÎNO|+1ÍÎQȹ [\

É+y6úFN|î¡ÔÇK)KÔ

ª,

R ( Ω ) 0.17

dL (mH) 1.9

qL (mH) 1.9

p 4

λ (wb) 1.629

2 /

3

1.

()*S|6Ûi ÁNO½¾|;ÔKå4

ÏÌ/[\NO½¾ ueNO½¾ väNO½¾#$

NO½¾,1ueNO½¾väNO½¾Û>-<

6¶67yzÜ<Ô,

(<) ÏÌ/[\NO½¾|

¼()*S0ÏÌ/[\NOÉ (Governor) cd

RKå4 GE SpeedtronicRWoodwardR,

<ú¿ 2 xÀü z 674 Droop &

Isochronous|R5Ï (1Droop Mode 0Isochronous

Mode)w x yKå4í=9 J_öl÷

à4ÏÌ/[\GÏÌ ( N )àá4#$G

'> ( FDV ),<xº4 5Ǽ()*S|0

÷1 1>S4<S],

(T) #$NO½¾|

¼#$NO½¾ÙÚ¿ 3xÀ|÷º>

T,ÛÏÌ/[\NOÉ ueNOÉväNOÉà

á0#$G'>fÕÛ@Aþ?

Page 5: 02 微渦輪發電機

15

4 !"#$

5 %"& SPWM'(

4#$G'>@ 14 GovernorAB@ 24

NOCä@ 34#$½¾ä@ 44#$

½¾0ël÷üâ#$½¾àá4#$Gä

'>wf @ 54#ÝÉAB@ 64)*

Sä@ 74)*SÏçåæ÷,

2.

<úF MatLab-Simulink-PSBNÊËRS|

s'< ÏÜÔ0T¿|äDR

ªxÀ÷)º>_,

SDR

qd

qd

dd

dd pNi

L

Li

L

Rv

Li

dt

d +−= 1 1

qd

q

dq

qq

qq L

pNpNi

L

Li

L

Rv

Li

dt

d λ−−−= 1 2

ÏçDR

( )1.5e q d q d qT p i L L i iλ = + −

3

SDR

( )me TDNTJ

Ndt

d −−= 1 4

Ndt

d =θ 5

6 )*+,

3.

()*½¾0ýÄ×NOÞ!"S]

&#$%]^TSEúF<F×Rô

ÉüýÄ×e()*½¾)òýÄ×

ëï()*S0ÏÌ/[\NOÉ¿ 4xÀÛ()

*S0ÌeNO]^ýÄ×0PT,

4.

4¸6¶Gd^|R05Ï<úFª*|R

0 SPWMNORÙÚ¿ 5xÀNOÉàá4Q

H÷ mú µ Iï SPWMåæÉåæJ,

ú µ -l¿Àª'Û P-f0ª*²YTe'S]

8Îàá´5SpO_Èï5S8ÎNO|R,

[QH÷ m-l¿Àª'Û×NOYTe'à

á´5SpO_Èï5SNO|R,

sdÈÉNO|R@·'-S]KÃ+&'/

S%Ã"ä^8y4 SPWMåæÉåæ0

ùQ'>ªxÀ

( )[ ]tmvm µsin×= 6

cS Ã5Ï_L<S]Mª*²K[

\(<S]0ÍÎ>è<S]N×úOíS

·S]8ÎàáíSªxÀO E V4cN

× Eµ Vµ 4cN×úX4cNö0P

[ ]VEX

EVP µµ −= sin 7

M½ª*²zòÍÎËyzcSò"ä^

,^ß-S]KÃ+_S]·"äÞ+^

-/S%Ã_S]ö·"ä^,

1.5

1

0.5

0

1.5

1

0.5

0

1.5

1

0.5

0

0.5

1

0.98

0.96

0.94

time-sec time-sec

time-sec time-sec 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30

Fue

l Dem

and

Tur

bine

Tor

que

Fue

l Flo

w

Spe

ed

Page 6: 02 微渦輪發電機

16

1500

1000

500

0

-500

2000

1000

0

-1000

-2000

1000

500

0

-500

-1000

1.4

1.2

1

0.8

0.6

0.4

time-sec time-sec

time-sec time-sec

0 0.5 1 1.5 0 0.5 1 1.5

0 0.5 1 1.5 0 0.5 1 1.5

time-sec time-sec

time-sec time-sec

0 0.5 1 1.5 0 0.5 1 1.5

0 0.5 1 1.5 0 0.5 1 1.5

Vdc

V

ab (

load

)

Vab

(in

vert

er)

Mod

ulat

on-I

ndex

3

2

1

0

-1

-2

-3

3

2

1

0

-1

2

1

0

-1

-2

1.02

1.015

1.01

1.005

1

0.995

Ia-p

u Sp

eed-

pu

Va-

pu

Ele

ctri

c Po

wer

-pu

1

0.5

0

-0.5

-1

lnput :

Signal numbert :

Start time [s] :

Number of cycles :

Fundamental frequency [Hz] :

Max Frequency [Hz] :

Frequency axis :

Display style :

0.2 0.2002 0.2004 0.2006 0.2008 0.201 0.2012 0.2014 0.2016 Time (s)

Fundamental (1200Hz) = 0.6556 , THD = 16.67%

FFT window: 2 of 1800 cycles of selected signal

0 1 2 3 4 5 6 7

15

10

5

0

Mag

(%

of

Fund

amen

tal)

Frequency (Hz) X 104

0.4

0.2

0

-0.2

-0.4

lnput :

Signal numbert :

Start time [s] :

Number of cycles :

Fundamental frequency [Hz] :

Max Frequency [Hz] :

Frequency axis :

Display style :

1.2 1.2002 1.2004 1.2006 1.2008 1.201 1.2012 1.2014 1.2016 Time (s)

Fundamental (1200Hz) = 0.3047 , THD = 22.23%

FFT window: 2 of 1800 cycles of selected signal

0 1 2 3 4 5 6 7

20

15

10

5

0

Mag

(%

of

Fund

amen

tal)

Frequency (Hz) X 104

iso_fixfreq_scope2

la

1

0.2

2

Display FFT window

1200

70000

Hertz

Bar (relative to Fund. or DC)

Display Close

iso_fixfreq_scope2

la

1

1.2

2

Display FFT window

1200

70000

Hertz

Bar (relative to Fund. or DC)

Display Close

Structure :

Structure :

7

8 (a)

(b)

1.

()*Sä|ÛÏÌ/[\NO½¾Þ#$NO

½¾|ün[7ܪ[\û66¶äÁä

DRª

( ) DNPPdt

dNH elecmech +−=2 8

1 H4ÏÜQGl÷)*S S×ØS

0*n D4RST÷N4ÏÌ mechP elecP Kå4

()*SàáS8ÎSàá8Î,

<S] H4 8.22 s D4 0.1 N-m-s/rad|¤_

O 0U_ÜÓV[\8Î15U_[\Ë4 0.5

pu,¿ 64ä|¤ÖÈÃ#$G #$G )

*SÏçÏÌÛ¿62PT_öÑ 5Uøù,

2.

¿ 7 46¶()*S¦§5Ï0ÙÚ¿250

kVA/1200 Hz ()*S]àáêü I

9 !"#(a) $%(b) $&

10 '(MatLab-Simulink-PSB)

IGBT]70ÈÉÈÉ©TM 50 Hz5ÏÛ×

üÉNO- 380 VVBàáê LC¹WÍ

`ac¹G 100 kW0[\1<¹Ûm¹ÉNO

- 0.3U_ò 100 kW[\XM|¤[\Qä0äÁ

a,

¦§|R[\È_0äÁa¿ 8xÀ(a)4È

ÉY0Áa (ÂÃýÄ× ÈÉàá× [

\× PWM0QH÷)(b))4S0Áa (ÂÃ

AÞ× ÏÌ8Î)Û¿62½¾0Á

akl0ÌPT_öZZ>S½¾yz-6¶

()*S¦§5ÏäÁa_()*S0ä

'nü,

Û>)*SÁaÕ,Û¿6êá-X\_ý

×VB~M÷øSG0WXyzÈÉà

1

3

3

Pe f(u)

p2f

Vabc (pu)

Freq

Freq wt

sin_cos

2

0

abc

sin_cos

abc_to_dq0 Transformation

Vd_ref (pu)

Vq_ref (pu)

Selector Vd Vq

P1

Discrete P1 Controller

Vd Vq inverter

0

VO

1

2 m

Vabc_inv

hypot modulation index

dqo

sin_cos abc

Dq0_to_abc Transformation

Page 7: 02 微渦輪發電機

17

1500

1000

500

0

1500

1000

500

0

2000

1000

0

-1000

-2000

1.5

1

0.5

0

0 0.5 1 1.5 2 2.5

Vdc

V

ab(l

oad)

Vab

(inv

erte

r)

Mod

ulat

ion

Inde

x

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

4

2

0

-2

-4

1.02

1

0.98

Ia-p

u Sp

eed-

pu

4

2

0

-2

-4

Va-

pu

4

3

2

1

0

-1

Ele

ctri

c Po

wer

-pu

time-sec

time-sec time-sec

time-sec time-sec

time-sec time-sec

time-sec

52

51.5

51

50.5

50

49.5

49

48.5

48

Fre

quen

cy-H

z

0 0.5 1 1.5 2 2.5 time-sec

4

3

2

1

0

-1

Ele

ctri

c Po

wer

-pu

0 0.5 1 1.5 2 2.5

52

51

50

49

48

Freq

uenc

y-H

z

0 0.5 1 1.5 2 2.5

time-sec

time-sec

11 /*+

12 /*+MatLab-Simulink-

PSB)

13 /,*+(a)

(b)

á×VB[ez_×üÉòQy÷Û

0.82Ë4 0.62[\×<ý]^PTSé

)Û8ÎÁa6êá-\> 0.1UÛ 0.8 puË

ï 0.6 pua[\0ðQ\ @]^äåæ,

14 /,*+-".

15 / 320123456 ¿ 9(a) (b)<]ÀX[\0S

ÍÍ_K`Û'X\0*

4 22.23 %[X\4 16.67 %]2S\²\

aáj±²sÞ82¦§5ÏmnfÇ

K[\5Ïbcn,

3. /

-6¶()*S¦§/+ Ã5Ï|RÏÈ

_ÈÉúFª*NO|R@\ÍÎ (f0) O4 1.04

puª*Î (D) O4 0.04×NOÉ0l÷ ( pk )

O 4 0.4 K l ÷ ( ik ) O 4 500 M

MatLab-Simulink-PSB30NOÉ¿ 10xÀ,½¾Ù

Ú)-[\Nfdðe<êm¹ÉxR0[\ð4Õ

R<Ç 250 kVA 380 V/25 kVQ×Éêm¹ÉÕï 10

MVA/25 kV/50 Hz +¿ 11 xÀ MatLab-

Simulink-PSBDR¿ 12xÀ,|¤_m¹É ^¹

S]fPT`a 100 kW[\0.3U_m¹É

S]Þ+ Ã5Ï2 U_m¹ÉîS]gh

¦§5Ï,

¿ 13 ]À¦§/ Ã5Ï|RÏÈ0ä(a) 4È

ÉY0Áa5Ï|RÈ_ý×^iËïÑ

300 VÏÈjö PWM0Qy÷ªkï5SpOy

zÁa_ölÕm(b) 4S0Áa-È

Page 8: 02 微渦輪發電機

18 !"#$

MTG1 REC INV

Filter 100kW

MTG2

380V

TR

25kV CBK CBK

Grid

REC INV

Filter 100kW

380V

TR

25kV

CBK

52

51

50

49

48

2

1.5

1

0.5

0

Freq

uenc

y-H

z

time-sec

Ele

ctri

c P

ower

-pu

0 0.5 1 1.5 2 2.5

time-sec 0 0.5 1 1.5 2 2.5

52

51

50

49

48

2

1.5

1

0.5

0

Fre

quen

cy-H

z

time-sec

Ele

ctri

c P

ower

-pu

0 0.5 1 1.5 2 2.5

time-sec 0 0.5 1 1.5 2 2.5

78 9:123;<

() 72 32

peakP (pu) 2.05 1.5

maxf∆ (Hz) 1.2 0.9

_S^Ñ 3 pun^ä8ÎÑ 2

pun=näSÑÞL¾^S]àáÓR

µ !^+]1Û¦§|RÏÈ4+ Ã|R=(

)*S]åæklSopyzaF>¦§/+

Ã|R0S]~äÓf¦§|R5Ï0S]jS

äUV"OÒ,¿ 14)4ÍÎÁaÛ¿62È

Éq_M 50.6 Hz5ÏÈ_ÍÎiËï 49.4 Hz

0Ñrs 1.2UµPT> 50 HzÞ+^eîÉ

f5Ï_ÍÎ\tghPT,

/3ª ÃåæopÞ Ãuö0×úO

þªÔ|¤4 72e×úO0¿À(úOdð4

32 e)S8ÎÈÉàáÍο 15 xÀ

Û¿62 ÃåæopQÕv+,i)òcd

¿À0S^ä8În ( peakP ) ÈÉà

áÍÎ5SðQG ( maxf∆ ) ºÕÛ62^

ä8În 25 %0Oó,

4. //

46¶¦§/+ Ã//S5Ï|R0ÏÈä½

¾ÙÚHfjð¿ 16xÀe|0S]I

½¾îÜè<Ç^ÙÚ0S]cÇS]êm¹ÉÕ

Rï+,ØS]fª*NO@\ÍÎO4 1.02

puª*ÎO4 0.04,|¤_cÇS]G" PTf5

Ï0.2 U_cSêÛm¹ÉÞ+ Ã5Ï1.1

U_+êm¹É½¾Q7cS Ã5ÏÙÚ,

¿ 17(a) (b) Kå]ÀcÇS]0ÍÎ8ÎÁ

aS]MTG1q_`a 0.6 pu8Î M 50.4 Hz

5Ï Ãï;`a8Îï 1 pu\ÍÎ"ä

Þ;^4 50 HzQ7cS ÃêcS]8ÎK

ÍÎPT> 50.3 HzS] MTG2)qM 50.2

Hz5Ï Ãï;ÍÎ^ßÞ;^4 50 Hz

È7cS Ã)^ßPT> 50.3 Hz,·¦§|RÏÈ

4+ Ã|R&+ Ã|RÏÈ4/S|RÏÈP

T_öSÑ- 2UM,

²åÛ'cÇS]08ÎwU`6

^n=nZS> 2 pu]ÀcÇS]^

_KÃ+_=S]a70opZÓSKÃ+_S

w/opDe>L¾^S]àá_Rµ

!0¿ÀxyÀ[TÑ 3 pu~6 pun=n ]ÀaF

>/S/+ Ã|R0S]~ä5SopUV"

0OÒ,

16 /,*+/=

17 -".!>.(a) MTG1(b)

MTG2

4¸z¦§ + Ã/S+|R05Ï

"()*S]M P-f ª*|RNO'Õ@A

<û=sd)()*S]05Ï|RÏÈfä

|¤K¥ÖȪº Û

1. ()*Sa[\ðQÑ 5U0PT_ö[ÈÉ

)\uö7yz-6¶ÈÉY0"½¾^

Áa_()*Sa'6Rá,

2. Û+ Ã|R&/S|RÏÈ릧|R\uö

7eÛ¦§|RÏÈ4+ Ã|R&Û+ Ã|

RÏÈ4/S|RÏÈPT_ö)Ñ- 1~2Uz

Þ()*Sa_ö |]yz-6¶5

Ï|RÏÈ_()*Sa~W-5 ª,

Page 9: 02 微渦輪發電機

19

3. <Ð3()*S]0ÈÉkl0ÌÖ

(Blocking) J"-S]àá¹Rµ !_S

ìO^8ÎäyzS]MÕe|O

Ò,¼½<|¤ÖÈs< \ ¬C-¦

§5Ï|Rª[\ÈC3·=()*S]a7

]^8ÎäeÓ<S]Û¦§|RÏÈ4

+ Ã|R_&·=S]åæklSä[cÇS

]^_KÃ+_=S]a70opjSopDe

>L¾^S]àá_Rµ !0¿À/

3ªopDeäxKÃuö0úO[T yz

|RÏÈ80S]~ä@z80S]jS

opUV"OÒjSe kx

S0()*S]MÕe|OÒ,

D RST÷

E IN×

H QGl÷

di ýÔ

qi ÇÔ

J QG

dL ýÔ

qL ÇÔ

m QH÷

N ÏÜÏÌ

p =

elecP 8Î

mechP S8Î

R TÜR

eT ËÏç

mT SÏç

dv ýÔ×

qv ÇÔ×

V áN×

X P

θ ÏÜúe

λ ËÒ

µ ú

Eµ INú

Vµ áNú

1. Lasseter, R., “Dynamic Models for Micro-turbine and

Fuel Cells,” Power Engineering Society Summer Meeting,

IEEE, Vol. 2, pp. 761-766 (2001).

2. Nagpal, M., Moshref, A., Morison, G. K., and Kundur, P.,

“Experience with Testing and Modeling of Gas Turbines,”

Power Engineering Society Winter Meeting, IEEE, Vol. 2,

pp. 652-656 (2001).

3. Cano, A., Jurado, F., and Carpio, J., “Modelling of Power

Plants Based on Gasifier/Gas Turbine Technologies,”

Africon Conference in Africa, IEEE, Vol. 2, pp. 797-802

(2002).

4. Working Group on Prime Mover and Energy Supply

Models for System Dynamic Performance Studies,

“Dynamic Models for Combined Cycle Plants in Power

System Studies,” IEEE Trans. Power Systems, Vol. 9, No.

3, pp. 1698-1708 (1994).

5. Hannett, L. N., Jee, G., and Fardanesh, B., “A

Governor/Turbine Model for a Twin-shaft Combustion

Turbine,” IEEE Trans. Power Systems, Vol. 10, No. 1, pp.

133-140 (1995).

6. Zhang, Q., and So, P. L., “Dynamic Modeling of a

Combined Cycle Plant for Power System Stability

Studies,” Power Engineering Society Winter Meeting,

IEEE, Vol. 2, pp. 1538-1543 (2000).

7. Banetta, S., Ippolito, M., Poli, D., and Possenti, A., “A

Model of Cogeneration Plants Based on Small-size Gas

Turbines,” International Conference and Exhibition on

Electricity Distribution, CIRED, Vol. 4, pp. 4-21 (2001).

8. Jurado, F., Ortega, M., and Acero, N., “Enhancing the

Electrical Performance of a Micro-turbine Using a

Genetic Fuzzy Controller,” Electric Machines and Drives

Conference, IEEE, Vol. 3, pp. 1748-1754 (2003).

9. Fethi, O., Dessaint, L. A., and Al-Haddad, K., “Modeling

and Simulation of the Electric Part of a Grid Connected

Microturbine,” Power Engineering Society General

Meeting, IEEE, Vol. 2, pp. 2212-2219 (2004).

10. Guda, S. R., Wang, C., and Nehrir, M. H., “A

Simulink-based Microturbine Model for Distributed

Generation Studies,” Proceedings of the 37th Annual

North American Power Symposium, pp. 269-274 (2005).

11. Gaonkar, D. N., Patel, R. N., and Pillai, G. N., “Dynamic

Model of Microturbine Generation System for Grid

Connected/Islanding Operation,” International Conference

Page 10: 02 微渦輪發電機

20

on Industrial Technology (ICIT 2006), IEEE, pp. 305-310

(2006).

12. Etezadi, M., and Choma, K., “Harmonic Characteristics of

a new 30 kW Microturbine Generator,” Harmonics and

Quality of Power, IEEE, Vol. 3, pp. 816-820 (2000).

13. Amorim, A., Cardoso, A. L., Oyarzabal, J., and Melo, N.,

“Analysis of the Connection of a Microturbine to a Low

Voltage Grid,” International Conference on Future Power

Systems, pp. 1-5 (2005).

14. Suter, M., “Active Filter for a Microturbine,”

Telecommunication Energy Conference, IEE, Vol. 484, pp.

162-165 (2001).

15. Zhang, K., and Chang, L., “Harmonic Current Reduction

for a PWM Rectifier with Very Low Carrier Ratio in a

Microturbine System,” Canadian Conference on Electrical

and Computer Engineering, pp. 587-590 (2005).

16. Chen, Z., and Spooner, E., “Wind Turbine Power

Converters: A Comparative Study,” Power Electronics

and Variable Speed Drives Conference, IEE, Vol. 456, pp.

471-476 (1998).

17. Mollerstedt, E., and Stothert, A., “A Model of a

Microturbine Line-side Converter,” International

Conference on Power System Technology, IEEE, Vol. 2,

pp. 909-914 (2000).

18. Hofmeester, N. H. M., and Polinder, H., “Modelling and

Control of a Cycloconverter with Permanent Magnet

Generator,” European Conference on Power Electronics

and Applications, European Power Electronics

Association, Vol. 4, pp. 382-387 (1993).

19. Vickers, S. L., Al Zahawi, B. A. T., and Shuttleworth, R.,

“Matrix Converter Application for Direct-drive Gas

Turbine Generator Sets,” Power Electronics and Variable

Speed Drives Conference, IEE, Vol. 429, pp. 103-107

(1996).

20. Illindala, M., and Venkataramanan, G., “Control of

Distribution Generation System to Mitigate Load and

Line Imbalance,” Power Electronics Specialists

Conference, IEEE, Vol. 4, pp. 2013-2018 (2002).

21. Barsali, S., Ceraolo, M., Pelacchi, P., and Poli, D.,

“Control Techniques of Dispersed Generators to Improve

the Continuity of Electricity Supply,” Power Engineering

Society Winter Meeting, IEEE, Vol. 2, pp. 789-794

(2002).

22. Colson, C. M., Wang, C., Nehrir, M. H., Guda, S. R., and

Li, J., “Stand-alone Hybrid Wind-Microturbine

Distributed Generation System: A Case Study,”

Proceedings of the 39th North American Power

Symposium (NAPS '07), pp. 337-341 (2007).

23. Al-Hinai, A., Sedhisigarchi, K., and Feliachi, A.,

“Stability Enhancement of a Distribution Network

Comprising a Fuel Cell and a Microturbine,” Power

Engineering Society General Meeting, IEEE, Vol. 2, pp.

2156-2161 (2004).

24. Jurado, F., and Jose, R. S., “Adaptive Control of a Fuel

Cell-Microturbine Hybrid Power Plant,” IEEE Trans.

Energy Conversion, Vol. 18, No. 2, pp. 342-347 (2003).

2007 03 01

ì

2007 04 02

2008 03 04

2008 03 06