35
Understanding and Improving the Realism of Image Composites Aliya Ibragimova University of Fribourg

DocumentCg

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: DocumentCg

Understanding  and  Improving  the  Realism  of  Image  Composites  

Aliya  Ibragimova    

University  of  Fribourg  

Page 2: DocumentCg

Agenda    

•  Realis7c  Image  composi7ng  •  Iden7fying  key  sta7s7cs    •  Human  subject  experiments  •  Algorithm    •  Results  

Page 3: DocumentCg

Image  composi7ng  

Page 4: DocumentCg

Composi7ng  procedure  

Foreground   Alpha  maAe  

New  background  

Composite  

1.    

2.  

Page 5: DocumentCg

Color  Transfer  Technique  (CTT)    Reinhard  et  al.  2001  

 ‘Match  color’  feature  of  Photoshop    

Page 6: DocumentCg

Color  transfer  technique:  limita7ons  

Conflates  the  effects  of  reflectance  and  illumina7on  

Cut-­‐and-­‐paste   Match  Color  

Page 7: DocumentCg

Improvements  of  CTT  (ColorComp)    Lalonde  and  Effros  2007  

•  Analyze  huge  dataset  of  natural  images  :  difference  in  distribu7on  of  realis7c  and  unrealis7c  images  

•  Recolor  regions  for  realis7c  composi7ng    Limita7ons:  requires  a  large  dataset,  depends  on  the  presence  of  images  that  are  similar  to  the  target    

Page 8: DocumentCg

Professional  compositors  

•  Isolate  highlights  and  match  their  colors  and  brightness  

•  Balance  mid-­‐tones  with  gamma  correc7on  •  Match  the  shadow  regions  

Shadows   Midtones   Highlights  

#  of  pixels  

Brightness  

Page 9: DocumentCg

Color  Harmony    Cohen-­‐Or  et  al.  2006  

Harmonic  colors  are  sets  of  colors  that  are  aesthe7cally  pleasing  in  terms  of  human  visual  percep7on.  

Page 10: DocumentCg

Color  Harmony    Cohen-­‐Or  et  al.  2006  

Limita7ons:  obtained  images  are  not  necessary  realis7c,  ignores  luminance  and  contrast,  the  approach  has  not  been  quan7ta7vely  evaluated  

Page 11: DocumentCg

Alterna7ve  to  alpha  maAe:  seamlessly  blending  

•  Feathering  •  Laplacian  pyramids  [Odgen  et  al.  1985]  •  Gradient-­‐domain  composi7ng  [Perez  et  al.  2003]  

Page 12: DocumentCg

Alterna7ve  to  alpha  maAe:  seamlessly  blending  

Limita7ons:  2  source  images  should  have  similar  colors  and  textures  

Cut-­‐and-­‐paste   Gradient-­‐domain  

foreground   background  

Page 13: DocumentCg

Problem  statement  

•  Which  sta7s7cs  control  realism?  •  How  do  these  sta7s7cs  affect  human  judgment  of  realism?  

•  Automa7c  algorithm  to  improve  realism?    

Page 14: DocumentCg

Good  sta7s7cs  

•  Highly  correlated  between  foreground  and  background  

•  Easy  to  adjust  •  Independent  from  each  other  

Page 15: DocumentCg

Categories  of  sta7s7cal  measures  

•  Luminance  •  Color  temperature  (CCT)  •  Satura7on  •  Local  contrast  •  Hue  (circular  sta7s7cs)    

Page 16: DocumentCg

Sta7s7cal  measures  

•  Mean  •  Standard  devia7on  •  High  •  Low  •  Kurtosis  •  Entropy  

#  of  pixels  

Brightness  mean  

Standard  devia7on  

Page 17: DocumentCg

Find  correla7on  

•  Pearson  correla7on  coefficient  •  Standard  devia7on  of  offset  δi  =  Mi

f  –  Mib  

   M  –  measure  f  –  foreground  b  –  background  i  –  sta7s7cs    

Page 18: DocumentCg

Sta7s7cal  experiment  

•  Use  large  (4126  images)  labeled  dataset  •  Select  the  most  correlated  sta7s7cs  

Page 19: DocumentCg

Luminance  

Page 20: DocumentCg

Color  Temperature  

Page 21: DocumentCg

Satura7on  

Page 22: DocumentCg

Sta7s7cal  experiment  

Page 23: DocumentCg

Results:  sta7s7cal  experiment    •   luminance,  color  temperature,  satura7on,  local  contrast  are  most  correlated  

•   mean  of  zones  correlate  more  than  other  sta7s7cal  measures  

•   mean  of  high  and  low  zones  correlate  more  than  mean  of  en7re  histogram  

Page 24: DocumentCg

Human  subjects  experiment  Experiment  with  human  subjects  on  Amazon  Mechanical  Turk  (MTurk)    

•  20  natural  images  •  3  key  sta7s7cs  (luminance,  color  temperature,  satura7on)  

Page 25: DocumentCg

Human  subject  experiments  

Background  luminance  Foregrou

nd  luminance  

Page 26: DocumentCg

Human  subjects  experiment  

Page 27: DocumentCg

Human  subjects  experiment  

Page 28: DocumentCg

Automa7c  composite  adjustment  

•  Zone  selec7on  using  machine  learning  (random  forest  classifier)        T  =  s  *  σg,  s  =  0.1    Three  binary  classifiers:  

•  Pick  smallest  changes  if  mul7ple  zones  •  Features  for  foreground  and  background  and  per  sta7s7c:  std,  skew,  kurt,  entropy,  p1,  p2  …p20.    

 

Page 29: DocumentCg

Pipeline  Input:  foreground  and  background  image  1.  Match  H-­‐zone  of  contrast  using  S-­‐shape  2.  Select  zone  and  adjust  mean  of  luminance  3.  Select  zone  and  adjust  mean  of  CCT  4.  Select  zone  and  adjust  satura7on    Adjust  algorithm  is  greedy,  could  iterate  several  7mes  if  needed    

Page 30: DocumentCg

Results  and  evalua7on  

Cut-­‐and-­‐paste   Manual   MatchColor   ColorComp   Ours  

Page 31: DocumentCg

Results  and  evalua7on  

Cut-­‐and-­‐paste   Manual   MatchColor   ColorComp   Ours  

Page 32: DocumentCg

Results  and  evalua7on  

Page 33: DocumentCg

Results  and  evalua7on  Thurstone’s  Law  of  Compara7ve  Judgement  

Page 34: DocumentCg

Results  and  evalua7on  

•  BeAer  than  previous  methods  •  Close  to  manual  edi7ng  

Limita7ons:  •  Religh7ng  •  Theory  for  zone  selec7on    

Page 35: DocumentCg

Ques7ons?