142
Optical Transport Network Ing. Jorge García Ceballos OC-A [email protected]

Otn septiembre

Embed Size (px)

Citation preview

Optical Transport Network

Ing. Jorge García CeballosOC-A

[email protected]

Objetivo General

Al término del curso, el participante explicará la

arquitectura de OTN,

Temario

1. Descripción de la Tecnología OTN

2. Señales de Mantenimiento

Capítulo 1

Descripción de la Tecnología OTN

Contenido

1. Jerarquía de Transporte Óptico

2. Estructura de OTN

3. Multiplexación y Mapeo

4. Descripción de los Encabezados

Introducción

� La arquitectura de las redes de transporte actuales están basadas en las redes de transporte de SDH.

� Las redes de SDH sean diseñado y están optimizadas básicamente para el transporte de trafico de Voz.

� Actualmente se está experimentando un crecimiento exponencial del volumen de tráfico de datos .

Ha surgido la necesidad de emigrardesde las actuales redes

hacia una estructura más flexible y dinámica

Introducción

� El resultado consiste en una red de transporte Óptico ( OTN ) basada en la tecnología WDM.

� La red de transporte óptica es una nueva jerarquía de transporte óptico definida por ITU-T G.709, G.805, G.806, G872, G798

� Consiste de una capa óptica y una capa eléctrica

G. 709

� Define los requisitos para el módulo de transporte óptico de orden n, (OTN-n)

� Define las señales de la red de transporte óptico, en términos de:

� Jerarquía de transporte óptico (OTH)� La funcionalidad del encabezado en el soporte de múltiples

longitudes de onda� Estructura de trama� Frecuencia de bits� Formatos para la asignación de señales de cliente

OTN – Optical Transport Network

� Está compuesta de un conjunto de Elementos de Red Ópticos.

� Interconectados con enlaces de fibra óptica.

� Capaz de proporcionara funciones de transporte, multiplexación, enrutamiento, gestión, supervisión y control de las señales del cliente

� De acuerdo a los requerimientos de la recomendación G. 872

Características de OTN

� Comparado con SDH

� Alta capacidad con alta

exactitud, Tbit/second por

fibra, vía DWDM

� Servicio transparente para

las señales del cliente

� Mapeo asíncono, funciones

de FEC, y costo reducido.

� Comparado con WDM

� Funcionalidades

mejoradas de OAM & red

para todos los servicios

� Control dinámico de la

capa electrica/óptical

Recomendaciones OTN

GestiónJitter y Wander

Protección de Red

Funciones y Característicasde los Equipos

Estructura y mapeo

Característicasde la capa

FísicaArquitectura

�G.874�G.874.1

�G.8251�G.8201

�G.873.1�G.873.2

�G.798�G.806

�G.709�G.7041�G.7042

�G.959.1�G.693�G.694

�G.872�G.8080

OTN

Estructura OTN

Estructura y Capas

ODUk(ODUkP、ODUkT)OPUk

OTUk OTUkV OTUk OTUkV

OCh OChr

OMSn

OTSnOPSn

IP/MPLS ATM Ethernet STM-N� OPUk: Optical channel Payload Unit-k

� ODUk: Optical channel Data Unit-k

� OTUk: completely standardized Optical channel Transport Unit-k

� OTUkV: functionally standardized Optical channel Transport Unit-k

� OCh: Optical Channel with full functionality

� OChr: Optical Channel with reduced functionality

� OMS: Optical Multiplex Section

� OTS: Optical Transmission Section

� OPS: Optical Physical Section

� OTM: Optical Transport Module

OTM-0.mOTM-nr.m

OTM-n.m

OTM-n.m

� n representa el máximo número de lambdas que se soportan a la menor velocidad de bit suportada en la lambda, m=1,2,3,12,23,123;

� OTS_OH, OMS_OH, OCh_OH y COMMS OH, campos dentro del OOS � OSC:Optical Supervisory Channel utilizado para transmitir el OOS

OMSn payload

OCCp OCCp OCCp

OCh payload

ODUk FECOH

OPUkOH

Señal del Cliente

OPUk payloadOHOPUk

ODUk

OTUk[V]

OCh

OCG-n.m

OTM-n.m OTSn payloadOTSn OH

OMSn OH

OC

Co

OChOH

OC

Co

OC

Co

OMU-n.m

Non

-ass

ocia

ted

OH

OOS

com

ms

OH

OT

M-n

.m

OTM Overhead Signal (OOS)

λ2

λ1

λn

λOSC

OTM-nr.m

� Espaciado fijo de canal, independiente del nivel de la señal

� 1<n≤16, m=1,2,3,12,23,123

� Sin canal de supervisión óptica

OPSn

OCCp OCCp OCCp

OCh payload

ODUk FECOH

OPUkOH

Señal del Cliente

OPUk payloadOHOPUk

ODUk

OTUk[V]

OChr

OCG-nr.m

OTM-nr.m

OT

M-1

6r.m

λ2

λ1

λ16

OTM-0.m

� El OTM 0.m soporta un canal óptico no coloreado en un solo enlace óptico con regeneración 3R en cada extremo.

� m=1,2,3

� Sin canal de supervisión óptico

OCh paylaod

ODUk FECOH

OPUkOH

Señal del Cliente

OPUk payloadOHOPUk

ODUk

OTUk[V]

OChr

OTM-0.m OPS0

OT

M-0

.m

Interfaces OTN

� User to Network Interface (UNI)

� Network Node Interface (NNI)� Inter-domain Interface (IrDI)� Intra-domain Interface (IaDI)

� Entre equipos de diferente proveedor (IrVI) (Inter Domain Vendor Interface)� Dentro de la sub-red de un proveedor (IaVI)

� El completamente estandarizado OTUk se utiliza en OTM IrDIs y puede utilizarseen OTM IaDIs

� El parcialmente estandarizado OTUk se utiliza en OTM IaDIs

OTMUNI

OTM NNIIaDI-IrVI

OTM NNIIaDI-IaVI

OTM NNIIaDI-IaVI

Operador de Red B

Proveedor X Proveedor Y

OTMNNIIrDI

Operador deRedC

USUARIO

A

Multiplexación

Multiplexación y Mapeo

Mapeo

Multiplexación

ODTUG3

ODTUG2

OChr

OChr

OChr

OCh

OCh

OCh

OTU3[V]

OTU2[V]

OTU1[V]

Señal del Cliente

Señal del Cliente

OPU3ODU3

OCCr

OCCr

OCCr

OCC

OCC

OCC

OCG-nr.m

1 ≤ i+j+k ≤ n

OCG-n.m

1 ≤ i+j+k ≤ n

OPU2ODU2

×1OPU1ODU1

OTM-nr.m

OTS, OMS, OCh, COMMSOSC OOS

OTM-n.m

×4

×1

×1×4

×16×1

×1×1

×1

×1

×1

×1

×1

×1

×1

×1

×1

×1

×1

×1

×1

×1

× i

× j

× k

× i

× j

× 1

Se

ña

ld

el

Clie

nte

×1

OTM-0.m

× k

Tipos de OTUk y Capacidad

Tipo de

OTU

Velocidad nominal

OTU

Tolerancia

OTU1 255/238 ×××× 2 488 320

kbit/s

±20 ppmOTU2 255/237 ×××× 9 953 280

kbit/s

OTU3 255/236 ×××× 39 813 120

kbit/s

NOTA – Las velocidades nominales de OTUk son

aproximadamente: 2 666 057.143 kbit/s (OTU1), 10 709

Velocidad OTUk = 255/(239-k) × STM-N bit rateVelocidad OTUk = 255/(239-k) × STM-N bit rate

Page21

Tipos de ODUk y Capacidad

Tipo de

ODU

Velocidad nominal

ODU

Tolerancia

ODU1 239/238 ×××× 2 488 320

kbit/s

±20 ppmODU2 239/237 ×××× 9 953 280

kbit/s

ODU3 239/236 ×××× 39 813 120

kbit/s

NOTA – Las velocidades nominales de ODUk son

aproximadamente: 2 498 775.126 kbit/s (ODU1), 10 037

Velocidad ODUk = 239/(239-k) ×STM-N bit rateVelocidad ODUk = 239/(239-k) ×STM-N bit rate

Tipos de OPUk y Capacidad

Tipo de

OPU

Velocidad Nominal OPU Tolerancia

OPU1 2 488 320 kbit/s

±20 ppmOPU2 238/237 ×××× 9 953 280 kbit/s

OPU3 238/236 ×××× 39 813 120 kbit/s

OPU1-Xv X * 2 488 320 kbit/s

±20 ppmOPU2-Xv X * 238/237 * 9 953 280 kbit/s

OPU3-Xv X * 238/236 * 39 813 120 kbit/s

NOTA– Las velocidades nominales de OPUk son aproximadamente: 2 488 320.000

kbit/s (OPU1 Payload), 9 995 276.962 kbit/s (OPU2 Payload) y 40 150 519.322 kbit/s

(OPU3 Payload). Las velocidades nominales de OPUk-Xv son aproximadamente: X

× 2 488 320.000 kbit/s (OPU1-Xv Payload), X × 9 995 276.962 kbit/s (OPU2-Xv

Payload) y X × 40 150 519.322 kbit/s (OPU3-Xv Payload).

Velocidades OPUk = 238/(239-k) ×STM-N bit rateVelocidades OPUk = 238/(239-k) ×STM-N bit rate

ODUk(TDM)� Las señales de baja velocidad ODUk se

multiplexan en señales de alta velocidadODUk utilizando TDM:

� Hasta 4 señales ODU1 se multiplexan en un ODU2

� Es posible multiplexar una mezcla de señales j (j ≤4) ODU2 y 16-4j ODU1 en un ODU3

Multiplexación ODU1 en ODU2

� ODU1flota en ¼ del área de carga del OPU2.

OTU2

OTU2FEC

Client layer signal(e.g., STM-16, ATM, GFP)

ODU1 ODU1O

H

Alignm

ODU2

x4

Client Layer Signal(e.g. STM-16)ODU1

OH

OP

U1

OH Client Layer Signal

(e.g. STM-16)ODU1 OH

OP

U1

OH Client Layer Signal

(e.g. STM-16)ODU1 OH

OP

U1

OH Client layer signal

(e.g., STM-16, ATM, GFP)ODU1 OH

ODU2 OH O

PU

2 O

H

OPU2 PayloadODU2

OH

Alignm

OP

U2

OH

OTU2

OH Client Layer Signal(e.g. STM-16)ODU1

OH

OP

U1

OH Client Layer Signal

(e.g. STM-16)ODU1 OH

OP

U1

OH Client Layer Signal

(e.g. STM-16)ODU1 OH

OP

U1

OH Client layer signal

(e.g., STM-16, ATM, GFP)ODU1 OH

OP

U1

OH

Alignm

Alignm

OP

U1

OH

OP

U1

OH

Descripción de los Encabezados

OOS

� TTI: Trail Trace Identifier� PMI: Payload Missing Indication � OCI: Open Connection Indication � BDI-O: Backward Defect Indication –Overhead� BDI-P: Backward Defect Indication – Payload� FDI-O: Forward Defect Indication –Overhead� FDI-P: Forward Defect Indication – Payload

Enc

abez

ado

No

Aso

ciad

o

OT

Sn

n

32

OC

h

1

General Management Communications

OM

Sn

FDI-O

FDI-P

OCI

BDI-O

BDI-P

PMI

FDI-P

FDI-O

BDI-O

BDI-P

PMI

TTI

Las funciones OOS están sujetas a

estandarización, la velocidad y el

formato no estánestandarizados

Trama OTN (k=1,2,3)

3825

40801 7 8 14 15 16 17

3824

1

2

3

4

OPU k payload

OP

Uk

OH

OPUk - Optical Channel Payload Unit

ODUkOH

ODUk – Optical Channel Data Unit

Client signal mapped in

OPUk payload

Client signal

OTUKFEC

OTUkOH

OTUk – Optical Channel Transport Unit

Alignm

Alignment

k :1 - 2.5G2 - 10G3 - 40G

Encabezado Eléctrico OTN

� ODUk OH� TCMACT: Tandem Connection Monitoring Activation/deactivation control channel� TCMi:Tandem Connection Monitoring i� FTFL:Fault Type & Fault Location reporting channel

� PM: Path Monitoring� EXP:Experimental� GCC1/2: General Communication Channel1/2� APS/PCC:Automatic Protection Swiching

coordination channel/Protection Communication Control channel

� Alignment OH� FAS: Frame Alignment Signal� MFAS: MultiFrame Alignment Signal

� OTUk OH� SM: Section Monitoring� GCC0:General Communication Channel0� RES: Reserved for future international

standardisation

� OPUk OH � PSI: Payload Structure Identifier� JC: Justification Control � NJO: negative justification opportunity

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS MFAS SM GCC0 RES JCRES

17

FAS

byte 1 byte 2 byte 3 byte 4 byte 5 byte 6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

OA1 OA1 OA1 OA2 OA2 OA2

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS MFAS SM GCC0 RES JCRES

17

� FAS (Frame Alignment Signal)

� A six byte OTUk-FAS signal is defined in row 1, columns 1 to 6 of the

OTUk overhead.

� OA1 is 0xF6(1111 0110 ) ,OA2 is 0x28(0010 1000)。

MFAS

MFAS OH Byte

MF

AS

sequence

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 00 0 0 0 0 0 1 10 0 0 0 0 1 0 0

....

.

.

1 1 1 1 1 1 1 01 1 1 1 1 1 1 10 0 0 0 0 0 0 00 0 0 0 0 0 0 1

..

� MFAS(MultiFrame Alignment Signal)

� defined in row 1, column 7;� The value of the MFAS byte will be incremented each

OTUk/ODUk frame and provides as such a 256 frame

multiframe.

� Individual OTUk/ODUk overhead signals may use this

central multiframe to lock their 2-frame, 4 frame, 8-

frame, 16-frame, 32-frame, etc., multiframes to the

principal frame.

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS SM GCC0 RES JCRES

17

MFAS

Page31

Encabezado SM de OTUk

� TTI (Trail Trace Identifier)

� a one-byte overhead is defined to transport the 64 byte

TTI signal

� The 64-byte TTI signal shall be aligned with the OTUk

multiframe and transmitted four times per multiframe.

� TTI struture:� 16 bytes SAPI:Source Access Point Identifier

� 16 bytes DAPI:Destination Access Point Identifier

� 32 bytes operator specific

Operatorspecific

TTI BIP-8

BEI/BIAE BD

I

RES

1 2 3 4 5 6 7 8

1 2 3

IAE

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS GCC0 RES JCRES

17

MFAS SM

Encabezado SM de OTUk

� BIP-8 (Bit Interleaved Parity-8)� For section monitoring, a one-byte error detection code signal is defined. � This byte provides a bit interleaved parity-8 (BIP-8) code ;� The OTUk BIP-8 is computed over the bits in the OPUk (columns 15 to 3824)

area of OTUk frame i, and inserted in the OTUk BIP-8 overhead location in OTUk frame i+2

BIP8

OPUk

1 14 15 3824

帧i

帧i+1

帧i+2

Encabezado SM de OTUk

� BEI/BIAE(Backward Error Indication/ Backward

Incoming Alignment Error)

� A four-bit BEI and BIAE signal is defined.

� This signal is used to convey in the upstream

direction the count of interleaved-bit blocks and incoming alignment error (IAE) condition.

� During an IAE condition the code "1011" is inserted

into the BEI/BIAE field and the error count is ignored.

Otherwise the error count (0-8) is inserted into the BEI/BIAE field.

Operatorspecific

TTI BIP-8

BEI/BIAE BD

I

RES

1 2 3 4 5 6 7 8

1 2 3

IAE

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS GCC0 RES JCRESMFAS SM

Encabezado SM de OTUk

� BDI (Backward Defect Indication)

� A single-bit backward defect indication (BDI)

signal is defined to convey the signal fail status

detected in a section termination sink function in

the upstream direction.

� BDI is set to "1" to indicate an OTUk backward

defect indication; otherwise, it is set to "0" Operatorspecific

TTI BIP-8

BEI/BIAE BD

I

RES

1 2 3 4 5 6 7 8

1 2 3

IAE

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS GCC0 RES JCRES

17

MFAS SM

Encabezado SM de OTUk

� IAE (Incoming Alignment Error)

� A single-bit incoming alignment error (IAE) signal is

defined to allow the S-CMEP ingress point to inform its

peer S-CMEP egress point that an alignment error in the

incoming signal has been detected.

� IAE is set to "1" to indicate a frame alignment error,

otherwise it is set to "0".

� RES (Reserved)

� two bits are reserved (RES) for future international

standardization. They are set to "00".

Operatorspecific

TTI BIP-8

BEI/BIAE BD

I

RES

1 2 3 4 5 6 7 8

1 2 3

IAE

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS GCC0 RES JCRES

17

MFAS SM

� GCC0 (General Communication Channel)

� Two bytes are allocated in the OTUk overhead to support a general

communications channel between OTUk termination points

� A clear channel which are located in row 1, columns 11 and 12

� RES (Reserved)

� Two bytes of OTUk overhead are reserved for future international

standardization

� located in row 1, columns 13 and 14

� set to all ZEROs

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4

PM

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

Encabezado OTUk GCC0 y RES

Encabezado ODUk PM

� TTI / BIP-8 / BEI / BDI

� For path monitoring, this overheads’ function are the

same as OTUk SM signal, except BEI signal which

doesn’t support BIAE function.

� in row 3, columns 10 to 12

Operatorspecific

TTI BIP-8

BEI BD

I

STAT

1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PM

Encabezado ODUk PM

Operatorspecific

TTI BIP-8

BEI BD

I

STAT

1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2 TCM1

TCM4TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PM

Bit 6 7 8 status

0 0 0 Reserved for future international standardization 0 0 1 Normal path signal0 1 0 Reserved for future international standardization 0 1 1 Reserved for future international standardization 1 0 0 Reserved for future international standardization 1 0 1 Maintenance signal: ODUk - LCK 1 1 0 Maintenance signal: ODUk - OCI 1 1 1 Maintenance signal: ODUk - AIS

� STAT (Status)� For path monitoring, three bits are defined as

status bits

� They indicate the presence of a maintenance signal

Encabezado ODUk TCM

� TTIi / BIP-8i / BEIi/BIAEi / BDIi

� For each tandem connection monitoring field,

this overheads’ function are the same as

OTUk SM signal

� Six fields of ODUk TCM overhead are

defined in row 2, columns 5 to 13 and row 3,

columns 1 to 9 of the ODUk overhead

TTIi BIP-8i

BEIi/BIAEi BD

Ii

STATi

1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

Operatorspecific

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS RES JCRESMFAS SM GCC0

PMTCM1TCM2TCM3

TCM6 TCM5 TCM4

Encabezado ODUk TCM

TTIi BIP-8i

BEIi/BIAEi BD

Ii

STATi

1 2 3 4 5 6 7 8

1 2 3

63

32

0

1516

31

SAPI

DAPI

Operatorspecific

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIGCC2 APS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PMTCM1

Bit 6 7 8 status

0 0 0 No source TC 0 0 1 In use without IAE0 1 0 In use without IAE

0 1 1Reserved for future international standardization

1 0 0Reserved for future international standardization

1 0 1 Maintenance signal: ODUk -LCK 1 1 0 Maintenance signal: ODUk -OCI 1 1 1 Maintenance signal: ODUk -AIS

TCM2TCM3

TCM6 TCM5 TCM4

� STAT (Status)� For each tandem connection monitoring field, three

bits are defined as status bits. � They indicate the presence of a maintenance

signal, if there is an incoming alignment error at the source TC-CMEP, or if there is no source TC-

CMEP active.

Page41

Monitoreo de Conexiones Anidadasy en Cascada de ODUk

A1 B1 C1 C2 B2 B3 B4 A2

A1 - A2

B1 - B2

C1 - C2

B3 - B4

TCM1 TCM1

TCM2

TCM1

TCM2

TCM3

TCM1

TCM2

TCM1 TCM1

TCM2

TCM1

TCM2

TCM3

TCM4

TCM5

TCM6

TCMi TCM OH field not in use TCMi TCM OH field in use

TCM2

TCM3

TCM4

TCM5

TCM6

TCM2

TCM3

TCM4

TCM5

TCM6

TCM3

TCM4

TCM5

TCM6

TCM3

TCM4

TCM5

TCM6

TCM3

TCM4

TCM5

TCM6

TCM4

TCM5

TCM6

Page42

Monitoreo de Conexiones Overlapping ODUk

A1 B1 C1 C2B2 A2

A1 - A2

B1 - B2

C1 - C2

TCM1 TCM1

TCM2

TCM1

TCM2

TCM3

TCM1

TCM2

TCM1

TCMi TCM OH field not in use TCMi TCM OH field in use

TCM2

TCM3

TCM4

TCM5

TCM6

TCM2

TCM3

TCM4

TCM5

TCM6

TCM3

TCM4

TCM5

TCM6

TCM3

TCM4

TCM5

TCM6

TCM4

TCM5

TCM6

ODUk TCM ACT

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2

TCM4TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIAPS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PMTCM1

GCC2

� TCMACT (TCM Activation/Deactivation)

� A one-byte TCM activation/deactivation field is located in row 2,

column 4.

� Its definition is for further study.

ODUk GCC1/GCC2

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2

TCM4TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIAPS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PMTCM1

GCC2

� GCC1 / GCC2 (General Communication Channel)

� Two fields of two bytes are allocated in the ODUk overhead to support two

general communications channels between any two network elements with

access to the ODUk frame structure (i.e., at 3R regeneration points).

� The bytes for GCC1 are located in row 4, columns 1 and 2, and the bytes

for GCC2 are located in bytes row 4, columns 3 and 4 of the ODUk

overhead.

Canal ODUk APS/PCC

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2

TCM4TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIRES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PMTCM1

GCC2 APS/PCC

� APS/PCC (Automatic Protection Switching/Protection

Communication Control)

� A four-byte ODUk-APS/PCC signal is defined in row 4, columns 5 to 8 of the

ODUk overhead.

� For linear protection schemes, the bit assignments for these bytes and the bit

oriented protocol are given in ITU-T Rec. G.873.1. Bit assignment and byte

oriented protocol for ring protection schemes are for further study.

� Up to eight levels of nested APS/PCC signals may be present in this field.

Canal ODUk FTFL

� FTFL Fault Type & Fault Location)

� One byte is allocated in the ODUk overhead to transport a 256-byte fault type

and fault location (FTFL) message.

� The byte is located in row 2, column 14 of the ODUk overhead.

� The 256-byte FTFL message consists of two 128-byte fields. The forward

field is allocated to bytes 0 through 127 of the FTFL message. The backward

field is allocated to bytes 128 through 255 of the FTFL message .

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2

TCM4TCMACT

GCC1

RES JC

RES JC

NJOPSIAPS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PMTCM1

GCC2

FTFL

Encabezado ODUk Experimental y Reservado

� EXP (Experimental)

� Two bytes are allocated in the ODUk overhead for experimental use.

� located in row 3, columns 13 and 14 of the ODUk overhead

� There is no requirement to forward the EXP overhead beyond the (sub)network.

� RES

� Nine bytes are reserved in the ODUk overhead for future international

standardization

� located in row 2, columns 1 to 3 and row 4, columns 9 to 14 of the ODUk overhead

� set to all ZEROs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2

TCM4TCMACT

GCC1

FTFL RES JC

RES JC

NJOPSIAPS/PCC

FAS RES JCRES

17

MFAS SM GCC0

PMTCM1

GCC2

EXP

RES

RES

Identificador de Estructura de Carga de OPUk

� PSI (Payload Structure Identifier)

� One byte is allocated in the OPUk

overhead to transport a 256-byte payload

structure identifier (PSI) signal

� aligned with the ODUk multiframe.

� PSI[0] contains a one-byte payload type.

PSI[1] to PSI[255] are mapping and

concatenation specific .

255

0

1

PT

Mapping& concatenation

specific

RES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

TCM3

TCM6 TCM5

TCM2

TCM4TCMACT

GCC1

RES JC

RES JC

NJOAPS/PCC RES

EXP

FAS RES JCRES

17

MFAS SM GCC0

PMTCM1

GCC2

FTFL

PSI

Códigos de Tipo de CargaMSB 1 2 3 4 LSB 1 2 3 4 Hex code Interpretation

0 0 0 0 0 0 0 1 01 Experimental mapping

0 0 0 0 0 0 1 0 02 Asynchronous CBR mapping

0 0 0 0 0 0 1 1 03 Bit synchronous CBR mapping

0 0 0 0 0 1 0 0 04 ATM mapping

0 0 0 0 0 1 0 1 05 GFP mapping

0 0 0 0 0 1 1 0 06 Virtual Concatenated signal

0 0 0 1 0 0 0 0 10 Bit stream with octet timing mapping

0 0 0 1 0 0 0 1 11 Bit stream without octet timing mapping

0 0 1 0 0 0 0 0 20 ODU multiplex structure

0 1 0 1 0 1 0 1 55 Not available

0 1 1 0 0 1 1 0 66 Not available

1 0 0 0 x x x x 80-8F Reserved codes for proprietary use

1 1 1 1 1 1 0 1 FD NULL test signal mapping

1 1 1 1 1 1 1 0 FE PRBS test signal mapping

1 1 1 1 1 1 1 1 FF Not available

Encabezado OPUk

� JC / NJO / RES (contorl de justificación / oportunidad de

justificación negativa / reservado)

� Se reservan siete bytes en el encabezado OPUk para mapeo y

concatenación

� Estos bytes se localizan en las filas 1 a 3, columnas 15 y 16 y columna 16 fila 4.

� 255 bytes en el PSI están reservados para propósitos específicos de

concatenación

RES

1

2

3

4

TCM3

TCM6 TCM5

TCM2

TCM4TCMACT

GCC1

RES JC

JC

APS/PCC RES

EXP

FAS RES JCRESMFAS SM GCC0

PMTCM1

GCC2 PSI

FTFL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

RES

NJO

Señales de Mantenimiento

Señales de Mantenimiento

� FDI((((forward defect indication))))

� FDI is a signal sent downstream as an indication that an upstream defect

has been detected.

� An FDI signal is detected in a trail termination sink function to suppress

defects or failures that would otherwise be detected as a consequence of

the interruption of the transport of the original signal at an upstream point..

� AIS and FDI are similar signals. AIS is used as term when the signal is in

the digital domain. FDI is used as the term when the signal is in the optical

domain.

� FDI is transported as non associated overhead in the OTM overhead

signal (OOS).

Señales de Mantenimiento

� AIS((((alarm indication signal))))

� AIS is a signal sent downstream as an indication that an upstream defect has been detected. An AIS signal is generated in an adaptation sink function

� An AIS signal is detected in a trail termination sink function to suppress defects or failures that would otherwise be detected asa consequence of the interruption of the transport of the original signal at an upstream point.

Señales de Mantenimiento

� AIS((((alarm indication signal))))

� ODUk-AIS is specified as all "1"s in the entire ODUk signal, excluding the frame alignment overhead (FA OH), OTUk overhead (OTUk OH) and ODUk FTFL

� The presence of ODUk-AIS is detected by monitoring the ODUk STAT bits in the PM and TCMi overhead fields

1

2

3

4

1 17 3824

All-1s pattern

87 14

FT

FL

FA OH OTUk OH

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT

Señales de Mantenimiento

� BDI (Backward Defect Indication)

� Backward Defect Indication Payload defect (dBDI-P) is monitored at

the OTS and OMS layers. The purpose of monitoring this parameteris to allow for single ended supervision of the trail

� BDI-P (dBDI-P) defect shall be declared/cleared at the trail

termination sink function within X ms/Y ms of detecting the far-end

defect causing the insertion of BDI-P into the OOS.

� X and Y are for further study.

� During signal fail conditions of the overhead signal, dBDI-P shall be set to false

Señales de Mantenimiento

� PMI (Payload Missing Indication)

� PMI defect is monitored at the OTS and OMS layers. The purpose of

monitoring this parameter is to suppress downstream loss of signal alarms

at the trail termination sink due to upstream defects causing missing

payload at the start of the trail.

� PMI defect (dPMI) shall be declared/cleared at the trail termination sink

function within X ms/Y ms of detecting the missing payload condition

causing the insertion of PMI into the OOS

� During signal fail conditions of the overhead signal, dPMI shall be set to

false .

Señales de Mantenimiento � OCI (open connection indication)

� A signal sent downstream as an indication that upstream the signal is not connected to a trail termination source

� The presence of ODUk-OCI is detected by monitoring the ODUk STAT bits in the PM

and TCMi overhead fields.

� The repeating "0110 0110" pattern is the default pattern; other patterns are also allowed

as long as the STAT bits in the PM and TCMi overhead fields are set to "110".

1

2

3

4

1 17 382487 14

FT

FL

FA OH OTUk OH

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT Repeating “0110 0110” pattern

Señales de Mantenimiento

� LCK (locked)

� A signal sent downstream as an indication that upstream the connection is

"locked", and no signal is passed through.

� The presence of ODUk-LCK is detected by monitoring the ODUk STAT

bits in the PM and TCMi overhead fields.

� dLCK shall be declared if the accepted STAT information (AcSTAT) is “101”. dLCK shall be cleared if the accepted STAT information is not equal

to “101”.

� During signal fail conditions of the data signal, dLCK shall be set to false.

1

2

3

4

1 17 382487 14

FT

FL

FA OH OTUk OH

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT

ST

AT Repeating “0101 0101”pattern

Señales de Mantenimiento

� IAE (Incoming Alignment Error)

� IAE at the OTUk layer: dIAE shall be declared/cleared if the IAE bit in

the SM overhead field (byte 3, bit 6) is “1”/ “0” for X consecutive frames.

X shall be 5.

� IAE at the ODUkT layer: dIAE shall be declared/cleared if the accepted

STAT information (AcSTAT) is/is not “010”.

� During signal fail conditions of the data signal, dIAE shall be set to

false .

� BIAE (Backward Incoming Alignment Error)

� dBIAE shall be declared/cleared if the BEI/BIAE bits in the SM/TCM overhead

field (byte 3, bit 1 to 4) are/are not “1011” for X consecutive frames. X shall be 3.

� During signal fail conditions of the data signal, dBIAE shall be set to false .

Page60

Señales de Mantenimiento y Administración

Management

functionsignal

Network layers

OTUk ODUkP ODUkT

Alignment LOF/LOM Y Y –

Connectivity TTI Y Y Y

Maintenance

Signal

AIS Y Y Y

OCI – Y Y

LCK – Y Y

LTC – – Y

BDI Y Y Y

BEI Y Y Y

IAE/BIAE Y – Y

Signal quality BIP-8 Y Y Y

Page61

OTN Layer Network Trail

� NODE A using general OTU, generate SM、PM、TCM1。

� NODE B using regenerator OTU, terminate SM, generate SM。

� NODE C using Line unit OTU, terminate SM、TCM1, generate SM。

� NODE D using general OTU, terminate SM、PM。

NODE ATM

NODE DTM

NODE BREG

NODE CODU ADM

OTS OTS OTS

OMS OMS OMSOTU/OCH OTU/OCH OTU/OCH

ODUkT

ODUkP

Client signal

Eventos de Alarma y Desempeño

Alarmas

Layer Alarm

OTUk OTUk_LOF、OTUk_AIS、OTUk_LOM、OTUk_TIM、OTUk_DEG、

OTUk_EXC、OTUk_BDI、BEFFEC_EXC

ODUk_PM ODUk_PM_TIM、ODUk_PM_DEG、ODUk_PM_EXC、

ODUk_PM_BDI、ODUk_PM_LCK、ODUk_PM_OCI、

ODUk_PM_AIS、ODUk_LOFLOM

ODUk_TCMi ODUk_TCMi_TIM、ODUk_TCMi_DEG 、ODUk_TCMi_EXC 、

ODUk_TCMi_BDI、 ODUk_TCMi_LCK、ODUk_TCMi_OCI、

ODUk_TCMi_AIS、ODUk_TCMi_LTC

OPUk OPUk_PLM、OPU2_MSIM、OPU3_MSIM

Remark: k=1,2,3,5G, i=1~6;

Eventos de Desempeño

layer Performance events

OTUk OTUk_BBE 、OTUk_BBER、OTUk_BIAES、OTUk_ES、OTUk_FEBBE、OTUk_FEBBER、OTUk_FEES、OTUk_FESES、OTUk_FESESR、OTUk_FEUAS、OTUk_IAES、OTUk_SES、OTUk_SESR、OTUk_UAS、FEC_AFT_COR_ER

ODUk_PM ODUk_PM_BBE、ODUk_PM_BBER、ODUk_PM_ES、ODUk_PM_FEBBE、ODUk_PM_FEBBER、ODUk_PM_FEES、ODUk_PM_FESES、ODUk_PM_FESESR、ODUk_PM_FEUAS、ODUk_PM_SES、ODUk_PM_SESR、ODUk_PM_UAS

ODUk_TCM

i

ODUk_TCMi_BBE、ODUk_TCMi_BBER、ODUk_TCMi_BIAES、ODUk_TCMi_ES、ODUk_TCMi_FEBBE、ODUk_TCMi_FEBBER、ODUk_TCMi_FEES、ODUk_TCMi_FESES、ODUk_TCMi_FESESR、ODUk_TCMi_FEUAS、ODUk_TCMi_IAES、ODUk_TCMi_SES、ODUk_TCMi_SESR、ODUk_TCMi_UAS

K=1,2,3,5G i=1~6.

Escenarios Típicos de OTN

Page66

Illustration

� XXXX = color (255/153/0) hypothetical condition (e.g. fiber broken, insert LCK)

� XXXX = color (102/153/0) Consequent Action(e.g. insert AIS,BDI)� XXXX = color (0/0/0) detect defect(e.g. R_LOS,ODUK_PM_AIS)

fiber

NODEA

Page67

Scenarios hypothesis

� These hypothesis apply to all scenarios :� TIM insert AIS downward, TIM suppression

enable� Monitoring both SAPI and DAPI to report

TIM� ALS、APR function disable

� BIP-8 monitoring only report DEG

Page68

Contents

2. Typical Scenarios of OTN2.1 point to point ODU2

2.2 ODU1 ADM 2.3 4*GE service convergence

2.4 TCM nested2.5 TCM cascaded

Page69

Case 1:point to point ODU2

� Bidirectional client service between A and C station.

� A, C (ODU TM):general OTU (LSX)

� B (OTU REG):regenerator OTU (LSXR)

A B C

OTU2 OTU2

ODU2P

Page70

Functional block

OCh source function

ODU2P source function

OTU2 source function

ODU2P sink function

OTU2 sink function

OCh sink function

OCh sink function

OTU2 sink function

OTU2 source function

OCh source function

OTU2 source function

OTU2 sink function

OCh source function

OCh sink function

A,C

B

Page71

Insert LCK at node A

A B C

ODU2_PM_LCK

ODU2_PM_BDI

ODU2_LCKODU2_PM_aBDI

Page72

Fiber broken between A and B

A B C

ODU2_PM_AIS

OTU2_BDIODU2_PM_BDI

R_LOS

Fiber broken

X

ODU2_aAIS

OTU2_aBDI

Page73

Fiber degrade between A and B

A B C

ODU2_PM_DEGOTU2_DEG

/

Fiber degrade OTU2_aBEI ODU2_PM_aBEI

OTU2_BEI performanceODU2_PM_BEI performance

Page74

Fiber badly degrade

A B C

ODU2_PM_AIS

OTU2_LOF

/

Fiber degrade OTU2_aBDI ODU2_PM_aBDI

OTU2_BDIODU2_PM_BDI

ODU2_aAIS

Page75

Receiving TTI is mismatch at B

A B C

ODU2_PM_AISOTU2_TIM

OTU2_BDIODU2_PM_BDI

SM_ExDAPI mismatch

ODU2_aAIS

OTU2_aBDI ODU2_PM_aBDI

Page76

Receiving TTI is mismatch at C

A B C

ODU2_PM_TIM

ODU2_PM_BDI

PM_ExDAPI mismatch

ODU2_PM_aBDI

Page77

Client signal lost at A

A B Cx

Fiber broken

ClientSFR_LOS

Page78

Contents

2. Typical Scenarios of OTN2.1 point to point ODU2

2.2 ODU1 ADM

2.3 4*GE service convergence

2.4 TCM nested2.5 TCM cascaded

Page79

Case 2:ODU1 ADM

� One wavelength (OTU2) transmit among different stations, include 4

ODU1::::

� The first ODU1service: ABC bidirectional

� The second ODU1service:ABCD bidirectional

� The third ODU1service: ABCDE bidirectional

� The forth ODU1service: EF bidirectional

A B C D E F

ODU1P

ODU1PODU1P

ODU1P

OTU2ODU2P

OTU2ODU2P

OTU2ODU2P

OTU2ODU2P

OTU2ODU2P

Page80

ODU1 ADM functional blockOCh source function

ODU2P source function

OTU2 source function

ODU2P sink function

OTU2 sink function

OCh sink function

ODU2 source function

OTU2 source function

ODU2 sink function

OTU2 sink function

OCh source function

OCh sink function

ODU1P source function

ODU1P sink function

ODU1

XC

function

OCh sink function

OTU2 sink function

OCh source function

OTU2 source function

ODU2 sink function

ODU2 source function

ODU1

XC

function

A,F

B

Page81

ODU1 ADM functional block

ODU2 source function

OTU2 source function

ODU2 sink function

OTU2 sink function

OCh source function

OCh sink function

OCh sink function

OTU2 sink function

OCh source function

OTU2 source function

ODU2 sink function

ODU2 source function

ODU1

XC

function

ODU1 source function

ODU1 sink function

ODU1 sink function

ODU1 源功能

C,D,E

Page82

Insert ODU1_LCK at A

A B C D E F

ODU1_LCK

ODU1_PM_LCK

ODU1_PM_BDI

� A insert ODU1_LCK to the third ODU1 service between A,E

Page83

Insert ODU2_LCK at A

A B C D E F

ODU2_LCK

ODU2_PM_LCK

ODU2_PM_BDI3×ODU1_PM_BDI

ODU1_PM_AISODU1_PM_AIS

ODU1_PM_AIS

Page84

Fiber broken between A and B

A B C D E F

OTU2_BDIODU2_PM_BDIODU1_PM_BDIODU1_PM_BDIODU1_PM_BDI

R_LOS

Fiber broken

X

ODU1_PM_AIS

ODU1_PM_AISODU1_PM_AIS

Page85

Fiber degrade between A and B

A B C D E F

OTU2_DEGODU2_PM_DEG

ODU1_PM_DEGODU1_PM_DEG

ODU1_PM_DEG

/

Fiber degrade

OTU2_BEI performanceODU2_PM_BEI performanceODU1_PM_BEI performanceODU1_PM_BEI performanceODU1_PM_BEI performance

Page86

Contents

2. Typical Scenarios of OTN2.1 point to point ODU2

2.2 ODU1 ADM 2.3 4*GE service convergence

2.4 TCM nested2.5 TCM cascaded

Page87

Case 3:4*GE service convergence

� 4*GE service converge at node C using one wavelength (5G) in

network:

� The first GE service : BC bidirectional

� The second GE service: ABC bidirectional

� The third GE service: DC bidirectional

� The forth GE service: EDC bidirectional

A B C D E

GE GE

GE GE

OTU5GODU5G

OTU5GODU5G

OTU5GODU5G

OTU5GODU5G

Page88

Functional blockOCh source function

ODU5G source function

OTU5G source function

ODU5G sink function

OTU5G sink function

OCh sink function

ODU5G source function

OTU5G source function

ODU5G sink function

OTU5G sink function

OCh source function

OCh sink function

GE

XC

function

OCh sink function

OTU5G sink function

OCh source function

OTU5G source function

ODU5G sink function

ODU5G source function

GE

XC

function

A,E

B,C,D

Page89

Insert LCK at A

ODU5G_PM_LCK

ODU5G_LCK

ODU5G_PM_BDI

A B C D E

Page90

Fiber broken between A and B

A B C D E

Fiber broken

OTU5G_BDIODU5G_PM_BDI

x

R_LOS

Page91

Fiber degrade between A and B

A B C D E

Fiber degrade

OTU5G_BEI performanceODU5G_PM_BEI performance

/

OTU5G_DEGODU5G_PM_DEG

Page92

Contents

2. Typical Scenarios of OTN2.1 point to point ODU2

2.2 ODU1 ADM 2.3 4*GE service convergence

2.4 TCM nested

2.5 TCM cascaded

Page93

Case 4: nested TCM

� OTU1 service transmit among different stations

� ODU1 service between A and F

A B C D E F

TCM2TCM1

OTU1 OTU1OTU1OTU1OTU1

ODU1

Page94

OCh sink function

OTU1 sink function

OCh source function

OTU1 source function

Functional block

TCM1 source function

OTU1 source function

TCM1 sink function

OTU1 sink function

OCh source function

OCh sink function

ODU1P source function

ODU1P sink function

ODU1

XC function

OCh sink function

OCh source function

OTU1 sink function

OTU1 source function

ODU1

XC function

B

TCM2 source function

OTU1 source function

TCM2 sink function

OTU1 sink function

OCh source function

OCh sink function

OCh sink function

OCh source function

OTU1 sink function

OTU1 source function

ODU1

XC function

A,F

C

Page95

Functional block

OTU1 source function

OTU1 sink function

OCh source function

OCh sink function

OCh sink function

OTU1 sink function

OCh source function

OTU1 source function

TCM2 sink function

TCM2 source function

ODU1

XC function

OTU1 source function

OTU1 sink function

OCh source function

OCh sink function

OCh sink function

OTU1 sink function

OCh source function

OTU1 source function

TCM1 sink function

TCM1 source function

ODU1

XC function

D

E

Page96

Insert LCK at A

A B C D E F

ODU1_LCK

ODU1_PM_LCK

ODU1_PM_BDI

TCM2TCM1

Page97

Insert LCK at B on TCM Operating Mode

A B C D E F

ODU1_LCK

ODU1_TCM1_LCKODU1_PM_AIS

ODU1_PM_BDI

ODU1_TCM1_BDI

TCM2TCM1

Page98

Insert LCK at B on TCM monitoring Mode

A B C D E F

ODU1_LCK

ODU1_TCM1_LCKODU1_PM_LCK

ODU1_PM_BDI

ODU1_TCM1_BDI

TCM2TCM1

Page99

Insert LCK at C on TCM Operating Mode

A B C D E F

ODU1_LCK

ODU1_TCM2_LCK

ODU1_TCM1_AIS

ODU1_PM_AIS

ODU1_PM_BDI ODU1_TCM1_B

DI

ODU1_TCM2_BDI

TCM2TCM1

Page100

Insert LCK at C on TCM Operating Mode

A B C D E F

ODU1_LCK

ODU1_TCM2_LCK

ODU1_TCM1_LCK

ODU1_PM_LCK

ODU1_PM_BDI ODU1_TCM1_B

DI

ODU1_TCM2_BDI

TCM2TCM1

Page101

Fiber broken between A and B

A B C D E F

Fiber brokenR_LOS ODU1_PM_AIS

x

OTU1_BDIODU1_PM_BDI

TCM2TCM1

Page102

Fiber broken between B and C

A B C D E F

Fiber broken

R_LOS ODU1_PM_AIS

x

ODU1_TCM1_AIS

ODU1_PM_BDI

OTU1_BDIODU1_TCM1_BDI

TCM2TCM1

Page103

Fiber broken between C and D

A B C D E F

Fiber broken

R_LOS

ODU1_PM_AIS

x

ODU1_TCM1_AIS

ODU1_PM_BDI

ODU1_TCM1_BDI

OTU1_BDIODU1_TCM2_BDI

TCM2TCM1

Page104

Fiber broken between D and E

A B C D E F

Fiber broken

R_LOSODU1_PM_AIS

x

ODU1_PM_BDI ODU1_TCM1_BDI OTU1_B

DI

TCM2TCM1

Page105

Fiber degrade between A and B

A B C D E F

ODU1_PM_DEGFiber degrade

/

OTU1_DEG

OTU1_BEI performanceODU1_PM_BEI performance

TCM2TCM1

Page106

Fiber degrade between B and C

A B C D E F

ODU1_PM_DEGFiber degrade/

OTU1_DEGODU1_TCM1_DEG

OTU1_PM_BEI performance

OTU1_BEI performanceODU1_TCM1_BEI performance

TCM2TCM1

Page107

Fiber degrade between C and D

A B C D E F

ODU1_PM_DEGFiber degrade

/

ODU1_TCM1_DEGOTU1_DEGODU1_TCM2_DEG

ODU1_TCM1_BEI performanceODU1_PM_BEI performance OTU1_BEI performance

ODU1_TCM2_BEI performance

TCM2TCM1

Page108

Without TCM1 source on operating mode

A B C D E F

ODU1_PM_AIS

Without TCM1 source ODU1_TCM1_LTCODU1_TCM1_TIM

ODU1_PM_BDI ODU1_TCM1_BD

I

TCM2TCM1

Page109

Without TCM1 source on monitoring mode

A B C D E F

Without TCM1 source

ODU1_TCM1_LTCODU1_TCM1_TIM

ODU1_TCM1_BDI

TCM2TCM1

Page110

Without TCM2 source on operating mode

A B C D E F

ODU1_PM_AIS

Without TCM2 source

ODU1_TCM2_LTCODU1_TCM2_TIM

ODU1_PM_BDI

ODU1_TCM1_BDI

ODU1_TCM1_AIS

ODU1_TCM2_BDI

TCM2TCM1

Page111

Without TCM2 source on monitoring mode

A B C D E F

Without TCM2 source

ODU1_TCM2_LTC

ODU1_TCM2_BDI

TCM2TCM1

Page112

Receiving TTI is mismatch at D on operating mode

A B C D E F

ODU1_PM_AIS

ExDAPI mismatchODU1_TCM1_AIS

ODU1_TCM2_TIM

ODU1_PM_BDI ODU1_TCM1_BD

I

ODU1_TCM2_BDI

TCM2TCM1

Page113

Receiving TTI is mismatch at D on monitoring mode

A B C D E F

ExDAPI mismatch

ODU1_TCM2_TIM

ODU1_TCM2_BDI

TCM2TCM1

Page114

Contents

2. Typical Scenarios of OTN2.1 point to point ODU2

2.2 ODU1 ADM 2.3 4*GE service convergence

2.4 TCM nested2.5 TCM cascaded

Page115

Case 5:TCM cascaded

� OTU1 service transmit among different stations� ODU1 service between A and F

A B C D E F

TCM1 TCM2

OTU1 OTU1OTU1OTU1OTU1

ODU1

Page116

Functional block

OCh sink function

OTU1 sink function

OCh source function

OTU1 source function

TCM1 source function

OTU1 source function

TCM1 sink function

OTU1 sink function

OCh source function

OCh sink function

ODU1P source function

ODU1P sink function

ODU1

XC function

OCh sink function

OCh source function

OTU1 sink function

OTU1 source function

ODU1

XC function

B

TCM2 source function

OTU1 source function

TCM2 sink function

OTU1 sink function

OCh source function

OCh sink function

OCh sink function

OCh source function

OTU1 sink function

OTU1 source function

ODU1

XC function

A,F

D

Page117

Functional block

OTU1 source function

OTU1 sink function

OCh source function

OCh sink function

OCh sink function

OTU1 sink function

OCh source function

OTU1 source function

TCM2 sink function

TCM2 source function

ODU1

XC function

OTU1 source function

OTU1 sink function

OCh source function

OCh sink function

OCh sink function

OTU1 sink function

OCh source function

OTU1 source function

TCM1 sink function

TCM1 source function

ODU1

XC function

C

E

Page118

Insert LCK at A

A B C D E F

ODU1_LCK ODU1_PM_LCK

TCM1 TCM2

ODU1_PM_BDI

Page119

Insert LCK at B on operating mode

A B C D E F

ODU1_LCK

ODU1_TCM1_LCK ODU1_PM_AIS

ODU1_PM_BDI

ODU1_TCM1_BDI

TCM1 TCM2

Page120

Insert LCK at B on monitoring mode

A B C D E F

ODU1_LCK

ODU1_TCM1_LCKODU1_PM_LCK

ODU1_PM_BDI

ODU1_TCM1_BDI

TCM1 TCM2

Page121

Insert LCK at D on operating mode

A B C D E F

ODU1_LCK

ODU1_TCM2_LCK

ODU1_PM_AIS

ODU1_PM_BDI

ODU1_TCM2_BDI

TCM1 TCM2

Page122

Insert LCK at D on monitoring mode

A B C D E F

ODU1_LCK

ODU1_TCM2_LCK

ODU1_PM_LCK

ODU1_PM_BDI

ODU1_TCM2_BDI

TCM1 TCM2

Page123

Fiber broken between A and B

A B C D E F

Fiber broken

R_LOS ODU1_PM_AIS

x

OTU1_BDIODU1_PM_BDI

TCM1 TCM2

Page124

Fiber broken between B and C

A B C D E F

Fiber broken

R_LOS ODU1_PM_AIS

x

ODU1_PM_BDI

OTU1_BDIODU1_TCM1_BDI

TCM1 TCM2

Page125

Fiber broken between C and D

A B C D E F

Fiber broken

R_LOSODU1_PM_AIS

x

ODU1_PM_BDI

OTU1_BDI

TCM1 TCM2

Page126

Fiber broken between D and E

A B C D E F

Fiber broken

R_LOS ODU1_PM_AIS

x

ODU1_PM_BDI

OTU1_BDIODU1_TCM2_BDI

TCM1 TCM2

Page127

Fiber degrade between A and B

A B C D E F

ODU1_PM_DEGFiber degrade

/

OTU1_DEG

OTU1_BEI performanceODU1_PM_BEI performance

TCM1 TCM2

Page128

Fiber degrade between B and C

A B C D E F

ODU1_PM_DEGFiber degrade

/

OTU1_DEGODU1_TCM1_DEG

OTU1_BEI performanceODU1_TCM1_BEI performance

TCM1 TCM2

Page129

Fiber degrade between C and D

A B C D E F

ODU1_PM_DEGFiber degrade/

OTU1_DEG

OTU1_BEI performance

ODU1_PM_BEI performance

TCM1 TCM2

Page130

Without TCM1 source on operating mode

A B C D E F

ODU1_PM_AISWithout TCM1 source

ODU1_TCM1_LTCODU1_TCM1_TIM

ODU1_PM_BDI

ODU1_TCM1_BDI

TCM1 TCM2

Page131

Without TCM1 source on monitoring mode

A B C D E F

Without TCM1 source

ODU1_TCM1_LTCODU1_TCM1_TIM

ODU1_TCM1_BDI

TCM1 TCM2

Page132

Receiving TTI is mismatch at C on operating mode

A B C D E F

ODU1_PM_AISExDAPI mismatch

ODU1_TCM1_TIM

ODU1_PM_BDI ODU1_TCM1_BDI

TCM1 TCM2

Page133

Receiving TTI is mismatch at C on monitoring mode

A B C D E F

ExDAPI mismatch

ODU1_TCM1_TIM

ODU1_TCM1_BDI

TCM1 TCM2

Page134

Questions

� What kind of the components compose the OTM-n.m?� OTSn, OMSn, OCh, OTUk/OTUkV, ODUk,

OPUk

� What’s the difference with the BIP-8 byte function among SM,PM,TCMi?� All of them the BIP-8 is computed over the

bits in the OPUk (columns 15 to 3824) area, but for different layers on OTUk, ODUkP, ODUKT.

� How many types of the TCM applications we have?

Page135

Summary

1. Optical transport hierarchy 2. OTN interface structure3. Multiplexing/mapping principles and bit rates4. Overhead description5. Maintenance signals and function for different layers6. Alarm and performance events 7. Typical Scenarios of OTN

Page136

Abbreviations and Acronyms

� 3R Re-amplification, Reshaping and Retiming

� AI Adapted Information

� AIS Alarm Indication Signal

� APS Automatic Protection Switching

� BDI Backward Defect Indication

� BDI-O Backward Defect Indication Overhead

� BDI-P Backward Defect Indication Payload

� BEI Backward Error Indication

� BI Backward Indication

� BIAE Backward Incoming Alignment Error

� BIP Bit Interleaved Parity

� CBR Constant Bit Rate

Page137

Abbreviations and Acronyms� CMEP Connection Monitoring End Point

� DAPI Destination Access Point Identifier

� EXP Experimental

� ExTI Expected Trace Identifier

� FAS Frame Alignment Signal

� FDI Forward Defect Indication

� FDI-O Forward Defect Indication Overhead

� FDI-P Forward Defect Indication Payload

� FEC Forward Error Correction

� GCC General Communication Channel

� IaDI Intra-Domain Interface

� IAE Incoming Alignment Error

Page138

Abbreviations and Acronyms

� IrDI Inter-Domain Interface

� JOH Justification Overhead

� MFAS MultiFrame Alignment Signal

� MFI Multiframe Indicator

� MSI Multiplex Structure Identifier

� NNI Network Node Interface

� OCC Optical Channel Carrier

� OCCo Optical Channel Carrier – overhead

� OCCp Optical Channel Carrier – payload

� OCCr Optical Channel Carrier with reduced functionality

� OCG Optical Carrier Group

� OCGr Optical Carrier Group with reduced functionality

Page139

Abbreviations and Acronyms

� OCh Optical channel with full functionality

� OChr Optical channel with reduced functionality

� OCI Open Connection Indication

� ODTUG Optical channel Data Tributary Unit Group

� ODTUjk Optical channel Data Tributary Unit j into k

� ODU Optical Channel Data Unit

� ODUk Optical Channel Data Unit-k

� OH Overhead

� OMS Optical Multiplex Section

� OMU Optical Multiplex Unit

� ONNI Optical Network Node Interface

� OOS OTM Overhead Signal

� OPS Optical Physical Section

Page140

Abbreviations and Acronyms� OPU Optical Channel Payload Unit

� OPUk Optical Channel Payload Unit-k

� OSC Optical Supervisory Channel

� OTH Optical Transport Hierarchy

� OTM Optical Transport Module

� OTN Optical Transport Network

� OTS Optical Transmission Section

� OTU Optical Channel Transport Unit

� OTUk completely standardized Optical Channel Transport Unit-k

� OTUkV functionally standardized Optical Channel Transport Unit-k

� PCC Protection Communication Channel

� PLD Payload

� PMI Payload Missing Indication

Page141

Abbreviations and Acronyms� PRBS Pseudo Random Binary Sequence

� PSI Payload Structure Identifier

� PT Payload Type

� RES Reserved for future international standardization� SAPI Source Access Point Identifier

� Sk Sink

� SM Section Monitoring

� So Source

� TCM Tandem Connection Monitoring

� TS Tributary Slot

� TxTI Transmitted Trace Identifier

� UNI User-to-Network Interface