46
Proving decidability of Intuitionistic Propositional Calculus on Coq Masaki Hara (qnighy) University of Tokyo, first grade Logic Zoo 2013 にて

Proving Decidability of Intuitionistic Propositional Calculus on Coq

Embed Size (px)

DESCRIPTION

直観主義命題論理の決定性をCoqで証明した話 @ Logic Zoo Workshop 2013 http://logiczoo13.pira.jp/

Citation preview

Page 1: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Proving decidability of Intuitionistic Propositional Calculus

on Coq

Masaki Hara (qnighy)

University of Tokyo, first grade

Logic Zoo 2013 にて

Page 2: Proving Decidability of Intuitionistic Propositional Calculus on Coq

1. Task & Known results

2. Brief methodology of the proof

1. Cut elimination

2. Contraction elimination

3. →𝐿 elimination

4. Proof of strictly-decreasingness

3. Implementation detail

4. Further implementation plan

Page 3: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Task

• Proposition: 𝐴𝑡𝑜𝑚 𝑛 , ∧, ∨, →, ⊥

• Task: Is given propositional formula P provable in LJ?

– It’s known to be decidable. [Dyckhoff]

• This talk: how to prove this decidability on Coq

Page 4: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Known results

• Decision problem on IPC is PSPACE complete [Statman]

– Especially, O(N log N) space decision procedure is known [Hudelmaier]

• These approaches are backtracking on LJ syntax.

Page 5: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Known results

• cf. classical counterpart of this problem is co-NP complete.

– Proof: find counterexample in boolean-valued semantics (SAT).

Page 6: Proving Decidability of Intuitionistic Propositional Calculus on Coq

methodology

• To prove decidability, all rules should be strictly decreasing on some measuring.

• More formally, for all rules 𝑆1,𝑆2,…,𝑆𝑁

𝑆0𝑟𝑢𝑙𝑒

and all number 𝑖 (1 ≤ 𝑖 ≤ 𝑁), 𝑆𝑖 < 𝑆0

on certain well-founded relation <.

Page 7: Proving Decidability of Intuitionistic Propositional Calculus on Coq

methodology

1. Eliminate cut rule of LJ

2. Eliminate contraction rule

3. Split →𝑳 rule into 4 pieces

4. Prove that every rule is strictly decreasing

Page 8: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Sequent Calculus LJ

•Γ⊢𝐺

𝐴,Γ⊢𝐺𝑤𝑒𝑎𝑘

𝐴,𝐴,Γ⊢𝐺

𝐴,Γ⊢𝐺𝑐𝑜𝑛𝑡𝑟

Γ⊢𝐴 𝐴,Δ⊢𝐺

Γ,Δ⊢𝐺(𝑐𝑢𝑡)

𝐴⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

•Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵(→𝑅)

•𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

Page 9: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Sequent Calculus LJ

•Γ⊢𝐺

𝐴,Γ⊢𝐺𝑤𝑒𝑎𝑘

𝐴,𝐴,Γ⊢𝐺

𝐴,Γ⊢𝐺𝑐𝑜𝑛𝑡𝑟

Γ⊢𝐴 𝐴,Δ⊢𝐺

Γ,Δ⊢𝐺(𝑐𝑢𝑡)

𝐴⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

•Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵(→𝑅)

•𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

• We eliminate cut rule first.

Page 10: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Cut elimination

• 1. Prove these rule by induction on proof structure.

•Γ⊢𝐺

Δ,Γ⊢𝐺𝑤𝑒𝑎𝑘𝐺

Δ,Δ,Γ⊢𝐺

Δ,Γ⊢𝐺𝑐𝑜𝑛𝑡𝑟𝐺

•Γ⊢⊥

Γ⊢𝐺⊥𝑅𝐸

•Γ⊢𝐴∧𝐵

Γ⊢𝐴∧𝑅𝐸1

Γ⊢𝐴∧𝐵

Γ⊢𝐵∧𝑅𝐸2

•Γ⊢𝐴→𝐵

𝐴,Γ⊢𝐵→𝑅𝐸

• If Γ1⊢𝐴 𝐴,Δ1⊢𝐺1

Γ1,Δ1⊢𝐺1(𝑐𝑢𝑡𝐴) and

Γ2⊢𝐵 𝐵,Δ2⊢𝐺2

Γ2,Δ2⊢𝐺2(𝑐𝑢𝑡𝐵) for all

Γ1, Γ2, Δ1, Δ2, 𝐺1, 𝐺2 , then Γ⊢𝐴∨𝐵 A,Δ⊢𝐺 𝐵,Δ⊢𝐺

Γ,Δ⊢𝐺(∨𝑅𝐸)

Page 11: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Cut elimination

• 2. Prove the general cut rule Γ ⊢ 𝐴 𝐴𝑛, Δ ⊢ 𝐺

Γ, Δ ⊢ 𝐺𝑐𝑢𝑡𝐺

by induction on the size of 𝐴 and proof structure of the right hand.

• 3. specialize 𝑐𝑢𝑡𝐺 (n = 1) ■

Page 12: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Cut-free LJ

•Γ⊢𝐺

𝐴,Γ⊢𝐺𝑤𝑒𝑎𝑘

𝐴,𝐴,Γ⊢𝐺

𝐴,Γ⊢𝐺𝑐𝑜𝑛𝑡𝑟

𝐴⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

•Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵(→𝑅)

•𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

Page 13: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Cut-free LJ

•Γ⊢𝐺

𝐴,Γ⊢𝐺𝑤𝑒𝑎𝑘

𝐴,𝐴,Γ⊢𝐺

𝐴,Γ⊢𝐺𝑐𝑜𝑛𝑡𝑟

𝐴⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

•Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵(→𝑅)

•𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

• Contraction rule is not strictly decreasing

Page 14: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Contraction-free LJ

𝐴,Γ⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥,Γ⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

•𝐴→𝐵,Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵(→𝑅)

•𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

Page 15: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Contraction-free LJ

• Implicit weak

𝐴,Γ⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥,Γ⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

• Implicit contraction

–𝐴→𝐵,Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

–Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

–𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Page 16: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Contraction-free LJ

• Implicit weak

𝐴,Γ⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥,Γ⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

• Implicit contraction

–𝐴→𝐵,Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

–Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

–𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Page 17: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Proof of weak rule

• Easily done by induction ■

Page 18: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Proof of contr rule

• 1. prove these rules by induction on proof structure.

–𝐴∧𝐵,Γ⊢𝐺

𝐴,𝐵,Γ⊢𝐺∧𝐿𝐸

𝐴∨𝐵,Γ⊢𝐺

𝐴,Γ⊢𝐺∨𝐿𝐸1

𝐴∨𝐵,Γ⊢𝐺

𝐵,Γ⊢𝐺(∨𝐿𝐸2)

–𝐴→𝐵,Γ⊢𝐺

𝐵,Γ⊢𝐺(→𝑤𝑒𝑎𝑘)

• 2. prove contr rule by induction on proof structure.■

Page 19: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Contraction-free LJ

𝐴,Γ⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥,Γ⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

•𝐴→𝐵,Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵(→𝑅)

•𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

Page 20: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Contraction-free LJ

𝐴,Γ⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥,Γ⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

•𝐴→𝐵,Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿

𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵(→𝑅)

•𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

• This time, →𝐿 rule is not decreasing

Page 21: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Terminating LJ

• Split 𝐴→𝐵,Γ⊢𝐴 𝐵,Γ⊢𝐺

𝐴→𝐵,Γ⊢𝐺→𝐿 into 4 pieces

1. 𝐶,𝐴𝑡𝑜𝑚 𝑛 ,Γ⊢𝐺

𝐴𝑡𝑜𝑚 𝑛 →𝐶,𝐴𝑡𝑜𝑚 𝑛 ,Γ⊢𝐺→𝐿1

2. 𝐵→𝐶,Γ⊢𝐴→𝐵 C,Γ⊢𝐺

𝐴→𝐵 →𝐶,Γ⊢𝐺(→𝐿2)

3. 𝐴→ 𝐵→𝐶 ,Γ⊢𝐺

𝐴∧𝐵 →𝐶,Γ⊢𝐺(→𝐿3)

4. 𝐴→𝐶,𝐵→𝐶,Γ⊢𝐺

𝐴∨𝐵 →𝐶,Γ⊢𝐺(→𝐿4)

Page 22: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Correctness of Terminating LJ

• 1. If Γ ⊢ 𝐺 is provable in Contraction-free LJ, At least one of these is true:

– Γ includes ⊥, 𝐴 ∧ 𝐵, or 𝐴 ∨ 𝐵

– Γ includes both 𝐴𝑡𝑜𝑚(𝑛) and 𝐴𝑡𝑜𝑚 𝑛 → 𝐵

– Γ ⊢ 𝐺 has a proof whose bottommost rule is not the form of 𝐴𝑡𝑜𝑚 𝑛 →𝐵,𝐴𝑡𝑜𝑚 𝑛 ,Γ⊢𝐴𝑡𝑜𝑚 𝑛 𝐵,𝐴𝑡𝑜𝑚 𝑛 ,Γ⊢𝐺

𝐴𝑡𝑜𝑚 𝑛 →𝐵,𝐴𝑡𝑜𝑚(𝑛),Γ⊢𝐺(→𝐿)

• Proof: induction on proof structure

Page 23: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Correctness of Terminating LJ

• 2. every sequent provable in Contraction-free LJ is also provable in Terminating LJ.

• Proof: induction by size of the sequent.

– Size: we will introduce later

Page 24: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Terminating LJ

𝐴,Γ⊢𝐴𝑎𝑥𝑖𝑜𝑚

⊥,Γ⊢𝐺(𝑒𝑥𝑓𝑎𝑙𝑠𝑜)

• 𝐶,𝐴𝑡𝑜𝑚 𝑛 ,Γ⊢𝐺

𝐴𝑡𝑜𝑚 𝑛 →𝐶,𝐴𝑡𝑜𝑚 𝑛 ,Γ⊢𝐺→𝐿1

𝐵→𝐶,Γ⊢𝐴→𝐵 C,Γ⊢𝐺

𝐴→𝐵 →𝐶,Γ⊢𝐺→𝐿2

•𝐴→ 𝐵→𝐶 ,Γ⊢𝐺

𝐴∧𝐵 →𝐶,Γ⊢𝐺→𝐿3

𝐴→𝐶,𝐵→𝐶,Γ⊢𝐺

𝐴∨𝐵 →𝐶,Γ⊢𝐺→𝐿4

•𝐴,Γ⊢𝐵

Γ⊢𝐴→𝐵→𝑅

𝐴,𝐵,Γ⊢𝐺

𝐴∧𝐵,Γ⊢𝐺∧𝐿

Γ⊢𝐴 Γ⊢𝐵

Γ⊢𝐴∧𝐵(∧𝑅)

•𝐴,Γ⊢𝐺 𝐵,Γ⊢𝐺

𝐴∨𝐵,Γ⊢𝐺∨𝐿

Γ⊢𝐴

Γ⊢𝐴∨𝐵∨𝑅1

Γ⊢𝐵

Γ⊢𝐴∨𝐵∨𝑅2

Page 25: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Proof of termination

• Weight of Proposition

– 𝑤 𝐴𝑡𝑜𝑚 𝑛 = 1

– 𝑤 ⊥ = 1

– 𝑤 𝐴 → 𝐵 = 𝑤 𝐴 + 𝑤 𝐵 + 1

– 𝑤 𝐴 ∧ 𝐵 = 𝑤 𝐴 + 𝑤 𝐵 + 2

– 𝑤 𝐴 ∨ 𝐵 = 𝑤 𝐴 + 𝑤 𝐵 + 1

• 𝐴 < 𝐵 ⇔ 𝑤 𝐴 < 𝑤(𝐵)

Page 26: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Proof of termination

• ordering of Proposition List

– Use Multiset ordering (Dershowitz and Manna ordering)

Page 27: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Multiset Ordering

• Multiset Ordering: a binary relation between multisets (not necessarily be ordering)

• 𝐴 > 𝐵 ⇔

A

B

Not empty

Page 28: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Multiset Ordering

• If 𝑅 is a well-founded binary relation, the Multiset Ordering over 𝑅 is also well-founded.

• Well-founded: every element is accessible

• 𝐴 is accessible : every element 𝐵 such that 𝐵 < 𝐴 is accessible

Page 29: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Multiset Ordering

Proof

• 1. induction on list

• Nil ⇒ there is no 𝐴 such that 𝐴 <𝑀 Nil, therefore it’s accessible.

• We will prove: 𝐴𝑐𝑐𝑀 𝐿 ⇒ 𝐴𝑐𝑐𝑀(𝑥 ∷ 𝐿)

Page 30: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Multiset Ordering

• 2. duplicate assumption

• Using 𝐴𝑐𝑐(𝑥) and 𝐴𝑐𝑐𝑀(𝐿), we will prove 𝐴𝑐𝑐𝑀 𝐿 ⇒ 𝐴𝑐𝑐𝑀(𝑥 ∷ 𝐿)

• 3. induction on 𝑥 and 𝐿

– We can use these two inductive hypotheses.

1. ∀𝐾 𝑦, 𝑦 < 𝑥 ⇒ 𝐴𝑐𝑐𝑀 𝐾 ⇒ 𝐴𝑐𝑐𝑀(𝑦 ∷ 𝐾)

2. ∀𝐾, 𝐾 <𝑀 𝐿 ⇒ 𝐴𝑐𝑐𝑀 𝐾 ⇒ 𝐴𝑐𝑐𝑀(𝑥 ∷ 𝐾)

Page 31: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Multiset Ordering

• 4. Case Analysis • By definition, 𝐴𝑐𝑐𝑀(𝑥 ∷ 𝐿) is equivalent to

∀𝐾, 𝐾 <𝑀 (𝑥 ∷ 𝐿) ⇒ 𝐴𝑐𝑐𝑀(𝐾) • And there are 3 patterns:

1. 𝐾 includes 𝑥 2. 𝐾 includes 𝑦s s.t. 𝑦 < 𝑥, and 𝐾 minus all such 𝑦 is

equal to 𝐿 3. 𝐾 includes 𝑦s s.t. 𝑦 < 𝑥, and 𝐾 minus all such 𝑦 is

less than 𝐿

• Each pattern is proved using the Inductive Hypotheses.

Page 32: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Decidability

• Now, decidability can be proved by induction on the size of sequent.

Page 33: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Implementation Detail

Page 34: Proving Decidability of Intuitionistic Propositional Calculus on Coq

IPC Proposition (Coq)

• Inductive PProp:Set := | PPbot : PProp | PPatom : nat -> PProp | PPimpl : PProp -> PProp -> PProp | PPconj : PProp -> PProp -> PProp | PPdisj : PProp -> PProp -> PProp.

Page 35: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Cut-free LJ (Coq)

• Inductive LJ_provable : list PProp -> PProp -> Prop := | LJ_perm P1 L1 L2 : Permutation L1 L2 -> LJ_provable L1 P1 -> LJ_provable L2 P1 | LJ_weak P1 P2 L1 : LJ_provable L1 P2 -> LJ_provable (P1::L1) P2 | LJ_contr P1 P2 L1 : LJ_provable (P1::P1::L1) P2 -> LJ_provable (P1::L1) P2 …

Page 36: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Exchange rule

• Exchange rule : Γ, 𝐴, 𝐵, Δ ⊢ 𝐺

Γ, 𝐵, 𝐴, Δ ⊢ 𝐺𝑒𝑥𝑐ℎ

is replaced by more useful Γ ⊢ 𝐺

Γ′ ⊢ 𝐺𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

where Γ, Γ′ are permutation

Page 37: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Permutation Compatibility (Coq)

• Allows rewriting over Permutation equality

Instance LJ_provable_compat : Proper (@Permutation _==>eq==>iff) LJ_provable.

Page 38: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Permutation solver (Coq)

• Permutation should be solved automatically

Ltac perm := match goal with …

Page 39: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Further implementation plan

Page 40: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Further implementation plan

• Refactoring (1) : improve Permutation-associated tactics

– A smarter auto-unifying tactics is needed

– Write tactics using Objective Caml

• Refactoring (2) : use Ssreflect tacticals

– This makes the proof more manageable

Page 41: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Further implementation plan

• Refactoring (3) : change proof order

– Contraction first, cut next

– It will make the proof shorter

• Refactoring (4) : discard Multiset Ordering

– If we choose appropriate weight function of Propositional Formula, we don’t need Multiset Ordering. (See [Hudelmaier])

– It also enables us to analyze complexity of this procedure

Page 42: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Further implementation plan

• Refactoring (5) : Proof of completeness

– Now completeness theorem depends on the decidability

• New Theorem (1) : Other Syntaxes

– NJ and HJ may be introduced

• New Theorem (2) : Other Semantics

– Heyting Algebra

Page 43: Proving Decidability of Intuitionistic Propositional Calculus on Coq

Further implementation plan

• New Theorem (3) : Other decision procedure

– Decision procedure using semantics (if any)

– More efficient decision procedure (especially 𝑂(𝑁 log 𝑁)-space decision procedure)

• New Theorem (4) : Complexity

– Proof of PSPACE-completeness

Page 45: Proving Decidability of Intuitionistic Propositional Calculus on Coq

おわり

1. Task & Known results

2. Brief methodology of the proof

1. Cut elimination

2. Contraction elimination

3. →𝐿 elimination

4. Proof of strictly-decreasingness

3. Implementation detail

4. Further implementation plan

Page 46: Proving Decidability of Intuitionistic Propositional Calculus on Coq

References

• [Dyckhoff] Roy Dyckhoff, Contraction-free Sequent Calculi for Intuitionistic Logic, The Journal of Symbolic Logic, Vol. 57, No.3, 1992, pp. 795 – 807

• [Statman] Richard Statman, Intuitionistic Propositional Logic is Polynomial-Space Complete, Theoretical Computer Science 9, 1979, pp. 67 – 72

• [Hudelmaier] Jörg Hudelmaier, An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic, Journal of Logic and Computation, Vol. 3, Issue 1, pp. 63-75