64
2. Thermal and Hyperspectral Sensing 遙遙遙遙 Remote Sensing 遙遙遙遙遙遙 遙遙遙遙遙遙遙遙遙 遙遙遙 1

Rs 2 thermal_hyper

Embed Size (px)

Citation preview

Page 1: Rs 2 thermal_hyper

1

2. Thermal and Hyperspectral Sensing

遙感探測Remote Sensing

國立成功大學測量及空間資訊學系

王驥魁

Page 2: Rs 2 thermal_hyper

2

Thermal imagingTABI-1800, 11:30 pm, GSD 15 cmNatural gas processing facility and power plantAlberta, Canada

chimney

Plume of hot gas

chimney(not in use)

underground pipe

Page 3: Rs 2 thermal_hyper

3

Thermal imaging• Not dependent on reflected solar radiation• Can be operated at any time of the day or night• Operated in 3 – 5 μm or 8 – 14 μm due to

atmospheric effect• Detectors must be cooled to very low temperature

for maximum sensitivityType Abbreviation Useful Spectral Range

Mercury-doped germanium ( 汞摻鍺 )

Ge:Hg 3 – 14 μm

Indium antimonide( 銻化銦 )

InSb 3 – 5 μm

Mercury cadmium telluride ( 汞碲化鎘 )

HgCdTe (MCT), or “trimetal” 3 – 14 μm

Page 4: Rs 2 thermal_hyper

4

Thermal radiation principles

Object with temperature

Internal temperature (kinetic temperature)

Thermal detectorRadiant temperature

(external temperature)

Page 6: Rs 2 thermal_hyper

6

Radiation from real materials• All real materials emit only a fraction of the energy

emitted from a blackbody at the equivalent temperature.

• Emissivity

• Emissivity can vary with wavelength• Emissivity can even vary with temperature

depending on the material

𝜀 ( λ )= radiant exitanceof anoject at a giventemperatureradiant exitance of a blackbody at the same temperature

0<𝜀 ( λ )<1

Page 7: Rs 2 thermal_hyper

7

Radiation from real materials

• Graybody has an emissivity less than 1 but is constant at all wavelengths

• The emissivity of selective radiator is a function of wavelength

Page 9: Rs 2 thermal_hyper

9

Variations of emissivity• Material• Condition and

arrangement of the materials

• Dry soil (0.95) vs. wet soil (0.92)

• Loose soil vs. compacted soil

• Individual tree leaves (0.96) vs tree crowns (0.98)

Material Typical Average Emissivity over 8 -14 μm

Clear water 0.98 - 0.99Wet snow 0.98 - 0.99Human skin 0.97 - 0.99Rough ice 0.97 - 0.98Healthy green vegetation 0.96 - 0.99Wet soil 0.95 - 0.98Asphaltic concrete 0.94 - 0.97Brick 0.93 - 0.94Wood 0.93 - 0.94Basaltic rock 0.92 - 0.96Dry mineral soil 0.92 - 0.94Portland cement concrete 0.90 - 0.94Paint 0.90 - 0.96Dry vegetation 0.88 - 0.94Dry snow 0.85 - 0.90Granitic rock 0.83 - 0.87Glass 0.77 - 0.81Sheet iron (rusted) 0.63 - 0.70Polished metals 0.16 - 0.21Aluminum foil 0.03 - 0.07Highly polished gold 0.02 - 0.03

Page 10: Rs 2 thermal_hyper

10

Consideration of spectral range for thermal data• The ambient temperature of earth surface is normally about

.• This results a peak emission at approximately 9.7 μm.• Hence, most thermal sensors perform at 8 – 14 μm range.• Although it’s a fact that the emissivity of objects can vary in 8

– 14 μ m, for broad band detectors, the objects are assumed as graybody.

• Cautions should be exercised when conducting inter-data comparison.within-band emissivity of materials in 10.5 – 11.5 μm sensed by

NOAA AVHRR is not the same as those in 10.4 – 12.5 μm sensed by Landsat TM band 6.

• The 3 – 5 μm range is useful for forest fire mapping.

Page 11: Rs 2 thermal_hyper

11

Atmospheric effects• Within given atmospheric window

• atmospheric absorption and scattering tend to make the signals from ground objects appear colder than they are

• atmospheric emission tends to make objects appear warmer than they are

Page 12: Rs 2 thermal_hyper

12

Interaction of thermal radiation with terrain elements

For Krichhoff radiation law, the spectral emissivity of an object equals its spectral absorptance, i.e., “good absorbers are good emitters”, .

In remote sensing applications, we assume all objects are opaque to thermal radiation.

The higher an objects’ reflectance, the lower its emissivity; vice versa.

Page 13: Rs 2 thermal_hyper

13

Interaction of thermal radiation with terrain elements• Water has negligibly low reflectance in thermal IR

(TIR), so its emissivity is essential 1 for that spectral range.

• Sheet metal is highly reflective of thermal energy, so it has an emissivity much less than 1.

• So, the thermal measurement of real materials.

• How to obtain the kinetic temperature from radiant temperature?

𝑀=𝜀𝜎 𝑇 4

Page 14: Rs 2 thermal_hyper

14

Diurnal temperature variation

Quasi-equilibrium(the change rate of temperature is small) High-contrast Cooling

Thermal crossover(no radiant temperature difference exists between two materials)

Variation of temperature (maximum, minimum, range, time of maximum and minimum)

Page 15: Rs 2 thermal_hyper

15

Thermal properties• Thermal conductivity

• A measure of the rate at which heat passes through a material• EX. Heat passes though metals much faster than though rocks.

• Thermal capacity• Determines how well a material stores head.• EX. Water has a very high thermal capacity compared to other material

types.

• Thermal inertia• A measure of the response of a material to temperature changes.• It increases with an increase in material conductivity, capacity, and

density.• In general, materials with high thermal inertia have more uniform

surface temperatures thoughtout the day and night than material of low thermal inertia.

Page 16: Rs 2 thermal_hyper

16

Thermal image (qualitative use)

Middleton, WisconsinFlying height 600 m, IFOV 5 mrad

Daytime (pm 2:40) Nighttime (pm 9:50)

Lake (warmer than surroundings)

Pond (warmer than surroundings)

HighTemperatureLow

Residential area (no thermal shadow at night)

Thermal “shadows” are created by trees due to cooler temperature.

Pavements are warmer than surroundings at both day and night

Page 17: Rs 2 thermal_hyper

17

Thermal image (qualitative use)

AM 9:40An ephemeral glacial lakeMiddleton, WisconsinFlying height 600 m, IFOV 5 mrad

HighTemperatureLow

Lake beach ridge(fine sandy loam, 細砂壤土 )

Sod farm( 草皮農場 )

Bare soil

Trees

Lakebed soil(silt loam 粉砂壤土 )

Page 18: Rs 2 thermal_hyper

18

Thermal image (qualitative use)

A cattle ranch, Middleton, WisconsinFlying height 600 m, IFOV 5 mrad HighTemperatureLow

PM 9:50 AM 1:45

cows

sheet metal roof

Page 19: Rs 2 thermal_hyper

19

Thermal image (qualitative use)

DaytimeQuantico, VirginiaIFOV 0.25 mrad, GSD ~0.3 m HighTemperatureLow

cows

shadow?

Page 20: Rs 2 thermal_hyper

20

Thermal image (qualitative use)

PM 1:50Oak Creek Power Plant, WisconsinFlying height 800 m, IFOV 2.5 mrad HighTemperatureLow

windPlume of cooling water

Lake Michigan

Page 21: Rs 2 thermal_hyper

21

Thermal image (qualitative use)

AM 2:00, -4°C (air)Iowa CityFlying height 460 m, IFOV 1 mrad

HighTemperatureLow

Wind-blown snow pattern on the ground

Building heat loss

Page 22: Rs 2 thermal_hyper

22

Thermal image (qualitative use)

R: band 5 (red)G: band 3 (green)B: band 2 (blue)

R: band 12 (thermal IR)G: band 9 (mid-IR)B: band 10 (mid-IR)

Zaca FireSanta Barbara, CaliforniaAutonomous Modular Sensor (AMS), NASA Ikhana UAV

active fire

burned over area

Page 23: Rs 2 thermal_hyper

23

Radiometric calibration of thermal images and temperature mapping• When quantified temperature results are required, the

calibration procedure is a must.• Two most commonly used calibration methods

• Internal blackbody source referencing• Air-to-ground correlation

• It is possible to estimate the surface temperature from the thermal image based on theoretical atmospheric models with the knowledge of the atmospheric condition (i.e., temperature, pressure, CO2 concentration) when the thermal image was collected.

Page 25: Rs 2 thermal_hyper

25

Air-to-ground correlation

Regression fitting:

system response parametersemissivity at point of measurement

kinetic temperature at point of measurement

Page 26: Rs 2 thermal_hyper

26

FLIR systems(not the company name)

• Forward-looking infrared (FLIR)• Compared to traditional system that are 1-D-array- or

scanning-based system, which requires the movement of the platform and post-processing for image generation.

• 2D array for real-time application

http://media4.s-nbcnews.com/j/MSNBC/Components/Photo/_new/900501-airport-thermal-hmed2p.grid-6x2.jpg

https://upload.wikimedia.org/wikipedia/commons/a/ab/Flickr_-_Official_U.S._Navy_Imagery_-_Alleged_drug_traffickers_are_arrested_by_Colombian_naval_forces..jpg

http://www.guncopter.com/images/gallery/uh-1n.jpg

Page 27: Rs 2 thermal_hyper

27

FLIR images

Thermal shadow?Different level of liquid in each tank.

Page 28: Rs 2 thermal_hyper

28

多光譜影像表示法 影像描述空間

灰值

水 植物

植物 土壤

土壤

1 波段灰值

波段

灰值

2 2 1

可運用三種描述空間:影像空間 (Image Space) 、光譜空間 (Spectral Space) 、及特徵空間 (Feature Space) 來表現多光譜影像的特性

影像空間 光譜空間 特徵空間

Page 29: Rs 2 thermal_hyper

多光譜影像表示法

29

以影像方式展現光譜在空間上之差異,常運用三原色表示三個不同波段之反應值,稱為假色影像 (Pseudo-color Image)

波段一波段二波段三波段四波段五

多光譜影像RGB

假色影像

RGB

影像空間 Image Space

Page 30: Rs 2 thermal_hyper

05/01/2023 30

多光譜影像表示法 光譜空間 Spectral Space

在光譜空間,每一個像元所涵蓋地物之光譜反應值為波長的函數,表現像元之光譜變化

波段區間水體像元

反應值DN

植物像元波段區間反應值

DN

Page 31: Rs 2 thermal_hyper

05/01/2023 31

多光譜影像表示法 特徵空間 Feature Space

將每個量測波段當成一個特徵變量,形成特徵空間。特徵空間的一個座標點 ( 或稱特徵向量 ) 對應到光譜空間為一條光譜曲線,而對應到影像空間則為一個像元band

col

row

灰值

1 2

1

2

水植物

植物土壤

土壤

波段灰值

波段灰值 特徵向量

特徵空間

特徵點

Page 32: Rs 2 thermal_hyper

05/01/2023 32

多光譜影像表示法 特徵空間點散佈圖 Scatter Plot

每個像元的反應值在特徵空間形成一個特徵點,展繪一區域的影像即形成散佈的點群圖,稱為點散佈圖。由於特徵空間是多維度的,無法直接展繪,通常以三角陣列之二維點位分佈圖來表現像元值變化的情形。二維點位分佈圖是一種投影後的點位分佈。也可利用透視或動畫檢視三個波段之量測值分佈情形

band2

band1

band4band3band2

band32D Scatter Plots

3D Scatter Plots

Page 33: Rs 2 thermal_hyper

05/01/2023 33

影像統計量 直方圖 Histogram

2 2

1 222

2 25 55

55 5

1 1 2 2 5 5 51 1 14

44

444

2

443

43 3 33 33

33 3

3 33 3

3

機率%

灰值

10

30

20

40

1 2 3 4 5

統計影像中各灰值出現之機率 ( 頻率 / 總像元數 ) ,並繪成直條統計圖形式 (Bar chart)

NDNcounthistDN )(

Page 34: Rs 2 thermal_hyper

05/01/2023 34

影像統計量 統計量 Statistics

ModeMedian

Mean

Mode : 頻率最高值Median : 中值Mean ( ): 平均值 Variance ( ): 變異數

Variance

NDNN

ii

1

NDNN

ii

1

22 )(

Histogram

灰值1 2 3 4 5

機率密度函數圖 PDF

灰值

機率密度%

機率%

10

30

20

40

Page 35: Rs 2 thermal_hyper

05/01/2023 35

影像統計量 特徵向量數學式

Band 2Band 1

Band 3

i

i

i

DNDNDN

3

2

1

Page 36: Rs 2 thermal_hyper

05/01/2023 36

影像統計量 統計量計算式

Band 1

Band

2

1σ11

σ22

N

bnbnmbmmn

kkk

k

DNDNN

Cov1

1

111 1 ,

N

bbkk

Tk DN

N 121

1 , Mean vector

Covariance

2

Band 2

Band

3

2σ22

σ33

3σ12

σ23

等機率橢圓

Page 37: Rs 2 thermal_hyper

05/01/2023 37

影像統計量 相關矩陣 Correlation Matrix

21

11 ,

1

1

1

1

mn

nnmmmnmn

k

k

R

1mn

1mn

10 mn

01 mn

nnmmmn ,0

nnmmmn ,0

Page 38: Rs 2 thermal_hyper

05/01/2023 38

影像統計量 相關矩陣 Correlation Matrix

21

11 ,

1

1

1

1

mn

nnmmmnmn

k

k

R

1mn

1mn

10 mn

01 mn

nnmmmn ,0

nnmmmn ,0

Page 39: Rs 2 thermal_hyper

05/01/2023 39

影像統計量Correlati

onBand

1Band

2Band

3Band

4Band

5Band

6Band

7

Band1 1            Band2

0.962

1          

Band3

0.919

0.966

1        

Band4

0.267

0.366

0.434

1      

Band5

0.518

0.617

0.714

0.821

1    

Band6

0.462

0.508

0.565

0.413

0.610

1  

Band7

0.743

0.813

0.883

0.629

0.918

0.668

1

1 2 3 4 5 6 71234567

Page 40: Rs 2 thermal_hyper

05/01/2023 40

Band1 Band2 Band3 Band4

Band5 Band6 Band71 2 3 4 5 6 7

1234567

Page 41: Rs 2 thermal_hyper

05/01/2023 41

波譜轉換與特徵萃取 波譜轉換 Spectral Transformation

將原影像波段之量測值以某種函數重新組合成新的波段稱為波譜轉換

nDN

DNDN

2

1

DN 則波譜轉換為 DNf

DN

若組合函數為線性函數則稱為波譜的線性轉換:

nnnn

n

c

cDN

ww

wwCDNW

1

1

111

DN

Page 42: Rs 2 thermal_hyper

05/01/2023 42

波譜轉換與特徵萃取波譜轉換事實上是將原波譜特徵重新選取或組合成新的特徵,因此又稱為特徵萃取。遙測常用的特徵萃取方式有:波段選取:從原波段中選擇出應用波段波段線性組合:波譜的線性轉換波段非線性組合:波譜的非線性轉換

特徵萃取 Feature Extraction

Page 43: Rs 2 thermal_hyper

05/01/2023 43

波譜轉換與特徵萃取利用影像統計方法計算得的相關矩陣,顯示波段資訊的相關性,高相關的兩波段表示含有高度重複的資訊。因此,從原波段中只要選其中較為獨立的波段,即可獲得相近的資訊。

波段選取 Feature Selection

Page 44: Rs 2 thermal_hyper

05/01/2023 44

波譜轉換與特徵萃取 主要成分分析 Principal Components Analysis, PCA

PCA 是一種波譜正交轉換,轉換後的特徵為不相關,即其 Covariance 為對角線矩陣或其相關矩陣為單位矩陣。轉換後影像之 Variances 將從大排到小,具愈大 Variance 的影像包含愈多光譜資訊,依 Variance 大小排序成主要成份影像

Band 1

Band

2 σ11

σ22

PC 轉換在特徵空間為旋轉至等機率橢圓 ( 球 ) 之主軸的轉換,以 2-band 影像為例

First PCSecond PC

θ

Page 45: Rs 2 thermal_hyper

05/01/2023 45

波譜轉換與特徵萃取 PCA 之計算

PCA 轉換後之主要成分影像間為獨立不相關,即其 Cov 之非對角元素皆為零,可應用特徵值 (Eigenvalue) 計算之理論,將 Cov 對角線化 (Diagonalization) ,即ECov

kkkk

k

00

0000

2

1

1

111

轉換後

ECov

kkk

PC

00

0000

ˆ00

0000

2

1

2

22

11

Page 46: Rs 2 thermal_hyper

05/01/2023 46

波譜轉換與特徵萃取 PCA 之計算

Cov E V Cov V

DN

DNV

DN

DN

PCT

I

N

T

n

1

也就是說我們可利用 Cov 求出 Eigenvalues 及 Eigenvectors 進而運用左式求得 Principal components

PC 影像所對應之 Eigenvalue 愈大代表所含的光譜資訊量愈多,因此我們常取前面幾張含資訊量較大的 PC 影像取代原影像,以增加分析或判讀之效率

由於 Cov 為二次矩陣 (Quadratic matrix) 因此其 Eigenvalues 個數與矩陣之階數相同且皆為實數,而且其 Eigenvactor matrix 為正交矩陣 (Orthogonal matrix) ,若 V 為 Eigenvector matrix 則

Page 47: Rs 2 thermal_hyper

05/01/2023 47

PC1 PC2 PC3

Page 48: Rs 2 thermal_hyper

05/01/2023 48

波譜轉換與特徵萃取 比率影像 Ratio Image

將兩個不同波段間對應的像元值取比率而得之影像,是一種非線性的波譜轉換。可利用比率影像減少同類地物因陰影或照明情況的不同所造成的差異,亦可應用地表物對某些光譜之反射率的差異強調某些地物光譜變化的特徵,如近紅外光影像與紅光影像之比可強調健康植物之區域 Band A Band B Ratio

落葉-陽 48 50 0.96

陰 18 19 0.95

針葉-陽 31 45 0.69

陰 11 16 0.69

Page 49: Rs 2 thermal_hyper

05/01/2023 49

波譜轉換與特徵萃取 植物指標影像 Vegetation Index Image採用比率影像的概念,將多光譜影像組合成反應植物量的影像,稱為植物指標影像。實作上是運用植物對紅光及近紅外光反射的差異來突顯植物的影像,常用的組成法有:

RVIDNDN

NIR

R

Ratio Vegetation Index (RVI)

Normalized Difference Vegetation Index (NDVI)

NDVIDN DNDN DN

NIR R

NIR R

Transformed Vegetation Index (TVI) TVI

DN DNDN DN

NIR R

NIR R

0 5

12

.

Page 50: Rs 2 thermal_hyper

05/01/2023 50

影像分類 Image Classification 基本概念多光譜影像分類是依據像元之多光譜資料將像元分群集,並對應到地物類別。依分類方法是否需要訓練資料可分成監督式 及非監督式 兩種類型:監督式分類 (Supervised Classification) :事先指定各地物類之樣本區,稱為訓練區 (Training area) ,而以訓練區之光譜資料為樣本,設定分類之準則將整幅影像分類非監督式分類 (Unsupervised Classification) :先單純依據像元之光譜資料,將像元分群集 (Cluster) ,而後再分析各 Cluster 之光譜資料判讀其相應之地物類別

Page 51: Rs 2 thermal_hyper

05/01/2023 51

影像分類 Image Classification 監督式分類訓練區將訓練區之像元展繪在特徵空間,同物類像元因為光譜特徵相似會聚集在一起,如右圖。監督式分類原理即分析計算訓練區像元在特徵空間之分布的統計參數,如中值、範圍及變異量等,而後利用這些參數決定其他像元的類別。

Band i

Band

j

WW

W

WW

W W

W

W W

W

UU

U

U

U

U

U

U

UU

U

UU U

U

U

U

UU

SS

SSS

SS

SS

CC

C

C

CCCCC

C

HHH

H

H HHHH

H

H

H

H

HH

HH

FF

F

FF

F

F

F

FF

FFF

F F

F

Page 52: Rs 2 thermal_hyper

05/01/2023 52

影像分類 Image Classification最短距離分類法 Minimum-Distance-to-Mean classifier

由各訓練區之群集區域計算得其中值,而後計算欲分類像元之光譜值與各中值距離,以最短距離決定其類別

Band i

Band

j

WW

W

WW

W W

W

W W

W

UU

U

U

U

U

U

U

UU

U

UU U

U

U

U

UU

SS

SSS

SS

SS

CC

C

C

CCCCC

C

HHH

H

H HHHH

H

H

H

H

HH

HH

FF

F

FF

F

F

F

FF

FFF

F F

F此分類法只考慮群集分佈中心,未考量群集分佈的散佈情形

Page 53: Rs 2 thermal_hyper

05/01/2023 53

影像分類 Image Classification平行體分類法 Parallelpiped classifier

由各訓練區之群集分佈區域之外包平行體劃定類別範圍,而以欲分類像元之光譜特徵所在之位置決定其類別

Band i

Band

j

WW

W

WW

W W

W

W W

W

UU

U

U

U

U

U

U

UU

U

UU U

U

U

U

UU

SS

SSS

SS

SS

CC

C

C

CCCCC

C

HHH

H

H HHHH

H

H

H

H

HH

HH

FF

F

FF

F

F

F

FF

FFF

F F

F

同時考慮了群集分佈中心及散佈,但外包平行體只是群集散佈情形初步的描述,而且常有重疊情形,會產生分類上的困擾

Page 54: Rs 2 thermal_hyper

05/01/2023 54

影像分類 Image Classification高斯最似分類法 Gaussian Maximum Likelihood classifier

假設訓練區之群集為高斯正常分佈,應用 Maximum Likelihood 理論決定群集分佈之參數,如此則可依 Bayes Theorem 計算欲分類之像元值屬於各群集之機率,而以最高機率決定其所屬之類別

Band i

Band

j

WW

W

WW

W W

W

W W

W

UU

U

U

U

U

U

U

UU

U

UU U

U

U

U

UU

SS

SSS

SS

SS

CC

C

C

CCCCC

C

HHH

H

H HHHH

H

H

H

H

HH

HH

FF

F

FF

F

F

F

FF

FFF

F F

F

等機率線無上述兩種分類法之缺點,是為目前最常用的分類法

Page 55: Rs 2 thermal_hyper

05/01/2023 55

影像分類 Image Classification訓練處理之意義訓練處理的品質決定分類的成效,雖分類階段可以高度地自動化,但訓練階段有賴專業的遙測判讀員綜合參考資料及影像區域之地理性質,以分析出訓練資料訓練處理之最終目的是要從影像中組合出一組可以用來描述影像中各地物類別之光譜樣本的統計量,訓練資料必須具代表性且完整, 也就是說所有的光譜類別都必須具有足夠代表性的統計量

Page 56: Rs 2 thermal_hyper

05/01/2023 56

影像分類 Image Classification訓練區選取在訓練區之選取上,我們通常以互動式在螢幕上選取多邊形訓練區域,亦可用指定種子像元的方式,再依其鄰近相似光譜之像元擴充成訓練區初步選完訓練區之後,須檢視各組訓練資料之分佈情形,以及各組資料間在光譜上之區分性,若分佈情形及區分性不良則須增加或重選訓練區

Page 57: Rs 2 thermal_hyper

05/01/2023 57

影像分類 Image Classification訓練區檢視分析光譜樣本直方圖分析:繪出訓練類別各波段之直方圖,檢視單一類別之分佈情形,或同時比較多個訓練類別之區分性群集區分性量化分析:以統計參數表示類別之區分性訓練資料自我分類之分析:以訓練資料本身先試做分類,而後檢視其分類結果之確性互動式漸進分類:利用電腦彩色顯圖技術,以互動方式暸解各訓練樣本之分佈情形或初步分類之結果代表區域分類:先初步選擇一個較具代表性之少量訓練資料進行分類,以此初步分類結果檢視並修飾訓練區,最後以此分類結果為訓練資料進行全區之分類

Page 58: Rs 2 thermal_hyper

05/01/2023 58

影像分類 Image Classification非監督式分類法常用的群集法為“ K-means” ( 其改進方法稱為 ISODATA) ,先由分析者給予群集數,而後於特徵空間任意設置同數目之群集中心,而計算每一點與各群集中心之距離,以最短距離決定像元之群集,分群後則依新的群集來計算中心,再進行分群計算,一直做到群集中心不變為止

Page 59: Rs 2 thermal_hyper

05/01/2023 59

分類精度評估誤差距陣 Error Matrix應用已知類別之參考資料,或稱地真資料 (Ground Truth) 評估分類的正確率,最普遍的評估方法是用 Error Matrix (Confusion Matrix or Contingency Table) 來表示分類錯誤之情形

Reference Data (Known Cover Types)

W S F U C H Row Total W 480 0 5 0 0 0 485 S 0 52 0 20 0 0 72 F 0 0 313 40 0 0 353 U 0 16 0 126 0 0 142 C 0 0 0 38 342 79 459 H 0 0 38 24 60 359 481 Cl

assif

icatio

n Da

ta

Col. Total 480 68 356 248 402 438 1992

Page 60: Rs 2 thermal_hyper

05/01/2023 60

分類精度評估正確率 Correctness正確分類之比率,顯示於 Error Matrix 中之對角元素,其整體的正確率以整體精度 (Overall Accuracy, OA) 表示之

整體精度正確分類之像元數

總像元數

%841992)35934212631352480(OA

某類別沒被認出來之比率,顯示於 Error Matrix 中之各行,遺漏率決定生產者精度 (Producer’s Accuracy)

生產者精度某類別正確分類之像元數

某類別之總像元數

遺漏率 Omission

Page 61: Rs 2 thermal_hyper

05/01/2023 61

分類精度評估誤認率 Commission某分類為誤認之比率,顯示於 Error Matrix 中之各列,誤認率決定使用者精度 (User’s Accuracy)

使用者精度某分類為正確之像元數

某分類之總像元數

Producer’s Accuracy User’s Accuracy

W=480/480=100% W=480/485=99%

S=52/68=76% S=52/72=87%

F=313/356=88% F=313/353=87%

U=126/248=51% U=126/142=89%

C=342/402=85% C=342/459=74%

H=359/438=82% H=359/481=75%

Page 62: Rs 2 thermal_hyper

05/01/2023 62

分類精度評估 指標 Kappa index從整體精度的評估來看,隨機分類也可獲得某種程度的正確率。較公平的評估是把預期的隨機分類正確率當成比較的基準,所以 指標是用來衡量分類結果到底比隨機分類好多少的量化指標。 指標同時考量 Error Matrix 中對角及非對角元素而得之統計指標,其估值   (k hat) 之定義為̂

agreement chance-1agreement chance-accuracy observedˆ

Observed accuracy (OA) 為觀測得之整體精度Chance agreement (CA) 則為預期的隨機分類正確率

Page 63: Rs 2 thermal_hyper

05/01/2023 63

分類精度評估隨機分類正確率Reference Data (Known Cover Types)

W S F U C H Row Total

W 480*485 68*485 356*485 248*485 402*485 438*485 485

S 480*72 68*72 356*72 248*72 402*72 438*72 72

F 480*353 68*353 356*353 248*353 402*353 438*353 353

U 480*142 68*142 356*142 248*142 402*142 438*142 142

C 480*459 68*459 356*459 248*459 402*459 438*459 459

H 480*481 68*481 356*481 248*481 402*481 438*481 481 Clas

sifica

tion

Data

Col. Total 480 68 356 248 402 438 1992

21

N

xxr

iii

)(

total grandentries diagonal of sumagreement chance

Page 64: Rs 2 thermal_hyper

05/01/2023 64

分類精度評估

793776

1674

1992

1

1

r

iii

r

iii

xx

x

N

)(

Reference Data (Known Cover Types)

W S F U C H Row Total W 480 0 5 0 0 0 485 S 0 52 0 20 0 0 72 F 0 0 313 40 0 0 353 U 0 16 0 126 0 0 142 C 0 0 0 38 342 79 459 H 0 0 38 24 60 359 481 Cl

assif

icatio

n Da

ta

Col. Total 480 68 356 248 402 438 1992

84.019921674OA

%..

..CA-1CA-OAˆ 80800

2001200840

計算結果

2001992793776 2 .CA