Bridge oriented presentation gfrp rebar(price comparison)

  • View
    1.625

  • Download
    0

  • Category

    Business

Preview:

DESCRIPTION

Introduction to GFRP Rebar in a bridge case study

Citation preview

INTRODUCTION TO FIBERGLASS INTRODUCTION TO FIBERGLASS REBAR TECHNOLOGYREBAR TECHNOLOGY

OUTLINE

• INTRODUCTION TO FRP REBAR• COMPARISON TO OTHER MATERIALS• FEATURES OF FRP REBAR• APPLICATIONS• LIFE CYCLE COST• CASE STUDY

The Pultrusion Process

FRP Rebar Composition

Fibres (Reinforcements)Fibres (Reinforcements)Resins (Polymers)Resins (Polymers)FillersFillersAdditivesAdditives

Fibres – Mechanical strengthFibres – Mechanical strengthResins – Chemical resistanceResins – Chemical resistance

• Main functions of the Fibres:

• Carry load• Provide strength and stiffness

1

23

FRP Rebar Composition

FRP Constituents Functions

• Main functions of the Resin: • Transfers stresses between fibers• Provides lateral support against buckling• Protects fibers from mechanical and environmental

damage

– Thermoset Resins are typically used:• Heat cured vinyl ester• Irreversible process• Cannot be deformed upon curing

BENDING PROCESS

Sand Coating Process

COMPARISON TO COMPARISON TO OTHER MATERIALSOTHER MATERIALS

0

10

20

30

40

50

60

70

80

90

100

Steel Pultrusion 70% roving Aluminum

X 103 psi

TENSILE STRENGTH

0

1

2

3

4

5

6

7

8

Steel Aluminum Pultrusion 70%roving

Pultrusion 50%mat & roving

g/cc

DENSITY

Co

nst

rain

t (M

Pa)

Displacement

Glass FRP

Carbon FRP

Steel

Concrete

4000

1250

400

40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

100 1,000 10,000 100,000 1,000,000No. of Cycles (Nos.)

Cra

ck

Wid

th (

mm

)

Comparison of GFRP, CFRP and STEEL Panels

Cycles toFailure @ 60 t

23,162

198,863

420,684

Cycles toFailure @ 60 t

23,162STEEL

Punching Shear Failure Mode

STEELSTEEL

CFRP

GFRP

Fatigue under 60 t Load Fatigue under 60 t Load Punching Shear Failure Mode

STEEL

GFRP

CFRP

Fatigue

Composite Rebars Composite Rebars FeaturesFeatures

Key features• Corrosion resistance (Na+, Cl-, Alkalis…)

• Electromagnetic Neutrality

• Low density (2 g/cm3)

• Thermal Conductivity (2.0 BTU/ft2/hr/ºF/in)

Key features FRP composites is a great solution to the

problems associated with the aging infrastructure of Canada for the following reasons:

– Corrosion resistance : • Reduce repair and maintenance cost.

• Enhance life duration of a concrete structure.

• Help obtain better life cycle cost.

– Electromagnetic Neutrality :• Do not bloc radio waves.• Will not interfere with radar waves.• Will ease communications through the structure (mobile phone).

• FRP composites is a great solution to the problems associated with the aging infrastructure of Canada for the following reasons:

– Low density :• Saves on transportation costs.• Easier and faster construction with less workers and equipment.

– Excellent electrical isolation properties :• Resistance to electrochemical corrosion (no galvanic corrosion).• No lost of current through the structure.

– Fabrication versatility of FRP allows the geometry, strength, stiffness, and durability characteristics of the member to be tailored for each particular application.

Key features

THE APPLICATIONSTHE APPLICATIONS

BRIDGES

BRIDGES

BRIDGES

BRIDGES

BRIDGES

BRIDGES

OTHERS

APPLICATIONS - CORROSION• PARKING GARAGE.

APPLICATIONS - CORROSION• Offshore Loading Quay (St. Lawrence Seaway)

APPLICATIONS - CORROSION

• Hall’s Harbour Hall’s Harbour (Nova Scotia)(Nova Scotia)

• Water Desalination Inlet – Saudi Arabia

APPLICATIONS - CORROSION

APPLICATIONS - CORROSION• MARINES RAMPS.

APPLICATIONS - CORROSION• MARINES RAMPS.

APPLICATIONS - CORROSION

• CONRETE HIGHWAY MTL 40 KIRKLAND

33

LIFE CYCLE COST

Engineering and evaluation

This portion of the presentation is inspired from the study released by Dr. Gordon Spark ,Ph.D. , P.Ing. (University of Saskatchewan) for ISIS Canada.

34

Four (4) concepts has been studied

Reinforcement Concrete Cover

CONCEPT SUP BOTTOM EXTERNAL TYPE THICKNESS SURFACE MEMBRANE

1 EPOXY EPOXY NONE HP 225mmASPHALTE

90mmYES

2 MMFX-2 MMFX-2 NONE HP 225mmASPHALTE

90mmYES

3GFRP EPOXY STRAP HP 225mm

ASPHALTE 90mm

YES

4 GFRP GFRP STRAP HP 200mm

HIGH DENSITY

CONCRETE 50mm

NO

HP = Haute Performance

35

COMPARAISON OF THE INITIAL COST

1216

1360

1258

1315

1100

1150

1200

1250

1300

1350

1400

1. Époxy surÉpoxy

2. MMFX surMMFX

3. Époxy surpiliers/GFRP

4. GFRP surpiliers/GFRP

PW Cost ($'000)

GFRP CONCEPT IS APPROXIMATELY 0 to 10 % HIGHER 2005

1216

1360

1258

1315

1100

1150

1200

1250

1300

1350

1400

1. Époxy surÉpoxy

2. MMFX surMMFX

3. Époxy surpiliers/GFRP

4. GFRP surpiliers/GFRP

PW Cost ($'000)

36

COMPARAISON OF THE MAINTENANCE AND DEMOLITION

COSTGFRP SOLUTION IS 45 TO 60% LOWER IN COST

1169 1193

891

493

0

200

400

600

800

1000

1200

1. Époxy surÉpoxy

2. MMFX surMMFX

3. Époxy surpiliers/GFRP

4. GFRP surpiliers/GFRP

PW Cost ($'000)

37

ALSO TAKING INTO ACCOUNT THE UNCERTAINTY RELATED TO THE USE OF THE DIFFERENT MATERIALS:

THE CONCEPT USING GFRP MAKE OWNERS SAVE UP TO 30% COMPARE TO EPOXY.

2515 2685

2222

1773

0

500

1000

1500

2000

2500

3000

PW

Co

st (

$'00

0)

1. Époxy surÉpoxy

2. MMFX surMMFX

3. Époxy surpiliers/GFRP

4. GFRP surpiliers/GFRP

Distribution des coûts de cycle de vie utile

CASE STUDY

• TITLE : COMPARISON OF DIFFERENT HIGHWAY TITLE : COMPARISON OF DIFFERENT HIGHWAY BRIDGEDECK REINFORCEMENT DESIGNS.BRIDGEDECK REINFORCEMENT DESIGNS.

• COMPARISON OF INITIAL COST.COMPARISON OF INITIAL COST.

CASE STUDY• There is considerable differences in mechanical

properties of different FRP rebar mainly in their modulus of elasticity.

• Could these differences in the GFRP mechanical properties affect the design of concrete deck slabs?

• Could the design of concrete bridge deck slabs using GFRP bars with superior mechanical properties result in reducing the required reinforcement consequently saving the cost.

• How these design compare to designs made with other so called corrosive resistant material ; galvanized steel and epoxy coated steel.

CASE STUDY

• This study aims to answer these questions by designing a typical slab-on-girder concrete bridge deck using four different types of reinforcement bars with different mechanical properties.

• One recently constructed concrete bridge deck reinforced with FRP bars (Melbourne Bridge) is taken as an example in the design.

• The Canadian Highway Bridge Design Code, CHBDC (CAN/CSA-S6-00, 2000) and the updated version were used to conduct this design (New Code, CHBDC 2005).

CASE STUDY• The bridge is a girder type consisting of four prestressed concrete

girders (Type NETB) continuously supported over three spans with a total length of 89.420 m.

• The deck is a 200-mm thickness concrete slab.

• The deck has overhangs of 1.52 m on each side.

14.00 m

3.52 m

2%

20

0 m

m

2%

3.52 m1.72 m 3.52 m

BA C

1.72 m

D

RESULTS

Bar List for Galvanized Steel.

Configuration of reinforcement

Identification Length (mm) DesignationQuantit

yTotal

Length (m)Price($/m)

Calculated Total Price ($)

As=833,33 mm2/m 15M @ 240mm

D1 11485 15M 864 9923,0 3,64 $ 36 119,87 $

As=1250 mm2/m 15M @ 160mm

D2A 10600 15M 465 4929,0 3,64 $ 17 941,56 $

As=1250 mm2/m 15M @ 160mm

D2B 3650 15M 465 1697,3 3,64 $ 6 177,99 $

As=1250 mm2/m 15M @ 160mm

D2E 8865 15M 543 4813,7 3,64 $ 17 521,85 $

As=1250 mm2/m 15M @ 160mm

D2F 5390 15M 543 2926,8 3,64 $ 10 653,44 $

As=1250 mm2/m 15M @ 160mm

D5 2735 15M 1086 2970,2 3,64 $ 10 811,56 $

27259,965m 99 226,27 $

Bar List for Epoxy coated steel.

Configuration of reinforcement

IdentificationLength (mm)

Designation QuantityTotal Length

(m)Price($/m)

Calculated Total Price ($)

As=833,33 mm2/m 15M @ 240mm

D1 11485 15M 864 9923.0 3.48 $ 34 508.84 $

As=1250 mm2/m 15M @ 160mm

D2A 10600 15M 465 4929.0 3.48 $ 17 141.33 $

As=1250 mm2/m 15M @ 160mm

D2B 3650 15M 465 1697.3 3.48 $ 5 902.44 $

As=1250 mm2/m 15M @ 160mm

D2E 8865 15M 543 4813.7 3.48 $ 16 740.34 $

As=1250 mm2/m 15M @ 160mm

D2F 5390 15M 543 2926.8 3.48 $ 10 178.28 $

As=1250 mm2/m 15M @ 160mm

D5 2735 15M 1086 2970.2 3.48 $ 10 329.34 $

27259,965m 94 800.56 $

RESULTS

Bar List for comparatives Configuration of

reinforcementIdentification

Length (mm)

Designation QuantityTotal Length

(m)Price($/m)

Calculated Total Price ($)

Afrp=1165 mm2/m No16 @

170mmD1 11485 16 1184 13598,24 2,71 $ 36 851,23 $

Afrp=1722 mm2/m No16 @

115mmD2A 13655 16 784 10705,52 2,71 $ 29 011,96 $

Afrp=1722 mm2/m No16 @

115mmD2E 13655 16 784 10705,52 2,71 $ 29 011,96 $

Afrp=861 mm2/m No16 @

230mmD5 3650 16 784 2861,6 2,71 $ 7 754,94 $

37870,88m 102 630,08 $

Bar List for our product.

Configuration of reinforcement

Identification Length (mm)Designati

onQuantity

Total Length (m)

Price($/m)

Calculated Total Price ($)

Afrp=921 mm2/m No16 @

215mmD1 11485 16 928 10658,08 3,23 $ 34 425,60 $

Afrp=1366 mm2/m No16 @

145mmD2A 13655 16 621 8479,755 3,23 $ 27 389,61 $

Afrp=1366 mm2/m No16 @

145mmD2E 13655 16 621 8479,755 3,23 $ 27 389,61 $

Afrp=683 mm2/m No16 @

290mmD5 3650 16 621 2266,65 3,23 $ 7 321,28 $

29884,24m 96 526,10 $

INITIAL COST COMPARISON

Rebar type Quantity (m) Initial Cost ($)

Galvanized steel 27 260 99 226

Epoxy coated steel 27260 94 801

Our Product 29 884 96 526

CASE STUDY

• TITLE : COMPARISON OF DIFFERENT DESIGNSTITLE : COMPARISON OF DIFFERENT DESIGNSSEAWALL SLAB REINFORCEMENT.SEAWALL SLAB REINFORCEMENT.

• COMPARISON OF INITIAL COST.COMPARISON OF INITIAL COST.

CASE STUDY

• This study aims at comparing design differences for a seawall slab with different types of reinforcement bars.

• It uses a slab design we recently worked on as an example.

• The ISIS Canada Guidelines as well as the CAN/CSA-S806 Code were used to conduct this design.

RESULTS

A

B

C

Bar List of a slab reinforced with Stainless Steel.

Configuration ID Length (mm) Designation QtyTotal length

(m)Price($/m)

Total per item($)

15M STIRRUPS A 1450 15M 90 130.5 $ 16.89 $ 2 204.15

15M @ 4000mm B 4000 15M 90 360.0 $ 16.89 $ 6 080.40

15M @ 8150mm C 8150 15M 34 277.1 $ 16.89 $ 4 680.22

767.6 m$ 12 964.77

RESULTS

A

B

C

Bar List of a slab reinforced with STANDARD V-ROD.

Configuration ID Length (mm) Designation QtyTotal length

(m)Price($/m)

Total per item($)

15M STIRRUPS A 1450 16 152 220.4$ 2.71+ bend

$ 1 053.36

15M @ 4000mm B 4000 16 150 600.0 $ 2.71 $ 1 626.00

15M @ 8150mm C 8150 16 76 619.4 $ 2.71 $ 1 678.57

1 439.8m$ 4 357.93

A

BC

RESULTS

A

B

C

Bar List of a slab reinforced with V-ROD HM.

Configuration ID Length (mm) Designation QtyTotal length

(m)Price($/m)

Total per item($)

15M STIRRUPS A 1450 16 92 133.4$ 2.71+ bend

$ 637.51

15M @ 4000mm B 4000 16HM 90 360.0 $ 3.23 $ 1 162.80

15M @ 8150mm C 8150 16HM 46 374.9 $ 3.23 $ 1 210.93

868.3m$ 3 011.24

A

BC

A

B C

INITIAL COST COMPARISON

Rebar type Quantity (m) Initial Cost ($)

Stainless Steel 767.6 12 965

V-ROD HM 868.3 3 011

CONCLUSION

• Codes are available:

• Design guides are available:

• Certification of FRP rebar is available (Can & USA).• Competitive solution against corrosion.

CSA S806-

02

CHBDC 2000

ISIS 2001

ACI 440.1R-

01

Recommended