AJAX – Algoritmo de Junção Adaptativo para eXecução em ambientes móveis Monografia Eriko...

Preview:

Citation preview

AJAX – Algoritmo de Junção Adaptativo para

eXecução em ambientes móveis

Monografia

Eriko Werbet

Unifor-CNPq

Motivação

Computação Móvel Bancos de Dados + Mobilidade Mobilidade + Restrições = Atraso Técnicas Convencionais são Ineficientes Processamento de Consultas Adaptativo Definição de Operadores Adaptativos

Objetivos

Implementar um algoritmo de junção capaz de executar operações de junção de forma eficiente, num ambiente com suporte à mobilidade.

Este algoritmo deve adaptar-se dinamicamente às restrições do ambiente.

Mobilidade e Bancos de Dados

Ambiente de Computação Móvel

Redes ad hoc Mobilidade Física e

Lógica (Agentes) Desafios Soluções

Bancos de Dados Móveis

Autônomos Heterogêneos Distribuídos

A Arquitetura AMDB

Acesso a Bancos de Dados Móveis

Comunidade de Bancos de Dados Móveis

Interoperabilidade Agentes Móveis x

Estáticos

O Agente Executor

Acesso aos Membros da CBDM Consultas Coordenador do Protocolo 2PC Operações de Junção

O Algoritmo AJAX

Adaptive Join Algorithm for mobile environments eXecution

Simetria Pipelining Buckets Dinâmicos Comparação

Progressiva Prevenção de Estouro

de Memória

Simetria

Tratar as fontes de dados de maneira independente, por meio de multithreading.

Evitar o bloqueio ou atraso na execução da junção.

Buckets Dinâmicos

Comparação de buckets com o mesmo “endereço” hash, em tabelas opostas.

Buckets com tamanho variável implicam em mais flexibilidade, pois não precisamos tratar bucket overflow.

Buckets podem acumular mais tuplas antes de iniciar o probing.Melhor adaptação à Comparação Progressiva.

Baixo overhead de manipulação.

Pipelining

Suprimento de tuplas para operadores mais altos na hierarquia da consulta.

Recebimento de tuplas de operadores mais baixos.

Padrão recursivo implica em pseudo-paralelismo na execução da consulta, ou seja, diminuição no tempo de resposta.

Comparação Progressiva

Comparação cíclica dos buckets.

Cada par de buckets é comparado e somente o conteúdo numa iteração “i” é considerado.Tuplas subseqüentes serão comparadas numa iteração “i + 1”.

Comparação e Hashing contínuo das tuplas.

Last Probe Remembrance

Cada tupla do bucket Alfa “lembra” a última tupla do bucket Beta (bucket oposto) que foi comparada com ela.

Evita Duplicatas. Evita Comparações

Desnecessárias.

Prevenção de Estouro de Memória

A granularidade observada passa do nível de bucket para o nível do sistema computacional.

Monitoramento da memória do sistema. Escolha de um ou vários pares de buckets

para descarregamento em disco.

Fases de Execução

Primeira Fase Fase de execução

normal do AJAX

Segunda Fase Executada quando

ocorre EOF ou quando as fontes estão em retardo.

O recebimento continua, mas a comparação passa a usar buckets em disco.

AJAX em Pseudocódigo1 thread de monitoramento EPSILON é iniciada em background;2 thread de acesso à fonte de dados ALFA é iniciada; //simetria3 se (operador depende de resultado parcial inferior) então 4 fonte BETA passa a ser o resultado parcial do operador inferior;5 thread de acesso à fonte de dados BETA é iniciada;6 iniciar geração da tabela hash para ambas as fontes; //dynamic bucket hashing 7 enquanto(não terminar o processamento) faça { //progressive probing8 pegar próximo bucketAlfa; 9 localizar próximo bucketBeta pelo hashcode do bucketAlfa; 10 se (houver tuplas novas no bucketAlfa ou no bucketBeta) então { 11 se (a.UltimoProbe < b.Indice) então { //”a” é tupla de Alfa e “b” de Beta 12 adicionar o par (a, b) no resultado;13 atualizar a.UltimoProbe; //last probe remembrance14 se (existir operador superior na consulta) então 15 enviar tuplas parciais para o operador superior; //pipelining 16 }17 se (EPSILON detectar a iminência de memory overflow) então { //overflow18 escolher par de buckets que ocupa maior espaço de memória;

19 descarregar buckets escolhidos em disco;20 }21 se (as fontes atrasarem e houver buckets em disco) então { //segunda fase22 comparar tuplas em disco [Alfa] com tuplas em disco [Beta];23 comparar tuplas em disco [Alfa] com tuplas em memória [Beta];24 comparar tuplas em memória [Alfa] com tuplas em disco [Beta];25 comparar tuplas em memória [Alfa] com tuplas em memória [Beta];26 }27 }28 }

Implementação do Protótipo

Linguagem Java Threads simples Função hash embutida etc AMDB e Aglets

Estruturas de Dados

LinkedList Tupla Bucket TabelaHash

Classes de Suporte

Ajax FonteDados Timer TimerTask

Detalhes de Implementação

Desafios Multithreading Sincronização Persistência HashTable de Java

A Tabela Hash do AJAX Encadeada Buckets Dinâmicos Deque (Deck)

Conclusão

AJAX garante: Produção incremental de tuplas-resultado Continuidade da execução da consulta

mesmo com fontes bloqueadas Reação proativa em caso de estouro de

memória

Trabalhos Futuros

Testes comparativos Aperfeiçoamento da Tabela Hash do AJAX Definição de uma nova função hash Pesquisa de estruturas de dados mais

adaptadas ao contexto do AJAX

Agradecimentos

CNPq Angelo Brayner, Dr-Ing. José de Aguiar, M.Sc. A todos que tornaram este projeto possível!