Discovering Metrics and Scale Space - Preliminary...

Preview:

Citation preview

Discovering Metrics and Scale Space

Preliminary Examination

Brittany Terese Fasy

Duke University, Computer Science Department

26 July 2010

B. Fasy (Duke CS) Prelim 26 July 2010 1 / 46

Questions

1 Tight Bound: Is the inequality

|ℓ1 − ℓ2| ≤4

π· (κ1 + κ2) · F(γ1, γ2)

a tight bound for curves in Rn for n > 3?

2 Simultaneous Scale Space: What happens if multipleagents are diffusing at the same time?

3 Understanding Vq: Does there exist a stability resultfor Vq?

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

B. Fasy (Duke CS) Prelim 26 July 2010 2 / 46

Curves and Metrics

Part 1

B. Fasy (Duke CS) Prelim 26 July 2010 3 / 46

Curves and Metrics

My Inequality

For curves γ1 and γ2,

|ℓ1−ℓ2| ≤4

π· (κ1+κ2) ·F(γ1, γ2)

B. Fasy (Duke CS) Prelim 26 July 2010 4 / 46

Curves and Metrics

Closed Space Curves

A curve is a continuous map γi : S1 → R

n.

v9

v10 v5

v4

v1v6

v7

v8

v2

v3p1

p2

p8

p5

p4

p9

p3

p6

p10p7

B. Fasy (Duke CS) Prelim 26 July 2010 5 / 46

Curves and Metrics

Closed Space Curves

A curve is a continuous map γi : [0, 1] → Rn, such that γi (0) = γi (1).

10.2 0.4 0.6 0.80

γ(0.8)γ(0.4)

γ(0.5)γ(0.6)

γ(0.7)

γ(0.1)

γ(0) = γ(1)

γ(0.9)γ(0.3)

γ(0.2)

B. Fasy (Duke CS) Prelim 26 July 2010 5 / 46

Curves and Metrics

Closed Space Curves

A curve is a continuous map γi : I → Rn, such that γi (0) = γi (1).

10.2 0.4 0.6 0.80

γ(0.8)γ(0.4)

γ(0.5)γ(0.6)

γ(0.7)

γ(0.1)

γ(0) = γ(1)

γ(0.9)γ(0.3)

γ(0.2)

B. Fasy (Duke CS) Prelim 26 July 2010 5 / 46

Curves and Metrics

Inscribed Polygons

B. Fasy (Duke CS) Prelim 26 July 2010 6 / 46

Curves and Metrics

Closed Space Curves

A curve is a continuous map γi : I → Rn, such that γi (0) = γi (1).

10.6 0.850.250

0.05 0.4 0.7 0.9

γ(0.4)

γ(0.6)

γ(0.9)

γ(0.05)

γ(0.7)

γ(0.25)

γ(0.85)

γ(0) = γ(1)

mesh(P) = max0≤i<m (ti+1 − ti )

B. Fasy (Duke CS) Prelim 26 July 2010 7 / 46

Curves and Metrics

Arc Length

ℓi = ℓ(γi ) =

∫ 1

0||γ′

i (t)|| dt

ℓ(P) =∑

j

ℓ(ej)

B. Fasy (Duke CS) Prelim 26 July 2010 8 / 46

Curves and Metrics

Arc Length

ℓi = ℓ(γi ) =

∫ 1

0||γ′

i (t)|| dt

ℓ(P) =∑

j

ℓ(ej)

Lemma

If Pk is a sequence of polygons inscribed in a smooth closed curve γ suchthat mesh(Pk) goes to zero, then

ℓ(γ) = limk→∞

ℓ(Pk).

B. Fasy (Duke CS) Prelim 26 July 2010 8 / 46

Curves and Metrics

Curvature

Let x ∈ I .Let rx denote the radius of the best approximating circle of γi (x).Then, the total curvature is:

κi = κ(γi ) =

∫ 1

01/rx dx .

B. Fasy (Duke CS) Prelim 26 July 2010 9 / 46

Curves and Metrics

Turning Angle

v9

v10 v5

v4

v1v6

v7

v8

v2

v3

α9

B. Fasy (Duke CS) Prelim 26 July 2010 10 / 46

Curves and Metrics

Curvature

Let x ∈ I .Let rx denote the radius of the best approximating circle of γi (x).Then, the total curvature is:

κi = κ(γi ) =

∫ 1

01/rx dx .

κ(P) =∑

i

αi .

B. Fasy (Duke CS) Prelim 26 July 2010 11 / 46

Curves and Metrics

Curvature

Let x ∈ I .Let rx denote the radius of the best approximating circle of γi (x).Then, the total curvature is:

κi = κ(γi ) =

∫ 1

01/rx dx .

κ(P) =∑

i

αi .

Lemma

If Pk is a sequence of polygons inscribed in a smooth closed curve γ suchthat mesh(Pk) goes to zero, then

κ(γ) = limk→∞

κ(Pk).

B. Fasy (Duke CS) Prelim 26 July 2010 11 / 46

Curves and Metrics

The Frechet Distance

F(γ1, γ2) = infα : S1→S1

maxt∈S1

(γ(t) − γ(α(t)))

B. Fasy (Duke CS) Prelim 26 July 2010 12 / 46

Curves and Metrics

Man and Dog

B. Fasy (Duke CS) Prelim 26 July 2010 13 / 46

Curves and Metrics

The Frechet Distance

F(γ1, γ2) = infα : S1→S1

maxt∈S1

(γ(t) − γ(α(t)))

B. Fasy (Duke CS) Prelim 26 July 2010 14 / 46

Curves and Metrics

The Frechet Distance

F(γ1, γ2) = infα : S1→S1

maxt∈S1

(γ(t) − γ(α(t)))

Lemma

If Pk and Qk are sequences of polygons inscribed in smooth closed curvesγ1 and γ2 such that mesh(Pk) and mesh(Qk) go to zero, then

F(γ1, γ2) = limk→∞

F(Pk , Qk).

B. Fasy (Duke CS) Prelim 26 July 2010 14 / 46

Curves and Metrics

My Inequality

For curves γ1 and γ2,

|ℓ1−ℓ2| ≤4

π· (κ1+κ2) ·F(γ1, γ2)

B. Fasy (Duke CS) Prelim 26 July 2010 15 / 46

Curves and Metrics

Two Related Theorems

[Cha62, F50] For a closed curve contained in a disk of radius r in Rn,

ℓi ≤ r · κi .

[CSE07] For two closed curves in Rn,

|ℓ1 − ℓ2| ≤2 vol(Sn−1)

vol(Sn)· (κ1 + κ2 − 2π) · F(γ1, γ2).

B. Fasy (Duke CS) Prelim 26 July 2010 16 / 46

Curves and Metrics

Questions

1 Tight Bound: Is the inequality

|ℓ1 − ℓ2| ≤4

π· (κ1 + κ2) · F(γ1, γ2)

a tight bound for curves in Rn for n > 3?

2 Simultaneous Scale Space: What happens if multipleagents are diffusing at the same time?

3 Understanding Vq: Does there exist a stability resultfor Vq?

B. Fasy (Duke CS) Prelim 26 July 2010 17 / 46

Scale Space

Part 2

B. Fasy (Duke CS) Prelim 26 July 2010 18 / 46

Scale Space

Scale Space

B. Fasy (Duke CS) Prelim 26 July 2010 19 / 46

Scale Space

Scale Space

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

B. Fasy (Duke CS) Prelim 26 July 2010 19 / 46

Scale Space

Scale Space

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

H(x , 0)

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

H(x , 100)

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

H(x , 1000)

B. Fasy (Duke CS) Prelim 26 July 2010 20 / 46

Scale Space

The Gaussian

−4 −2 0 2 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

G1(x , t) =1

(√

2πt)e− x2

2t2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gn(x , t) =1

(√

2πt)ne−

|x|2

2t2

This is the fundamental solution to the Heat Equation:

∂u

∂t(x , t)− △ u(x , t) = 0.

B. Fasy (Duke CS) Prelim 26 July 2010 21 / 46

Scale Space

Gaussian Convolution

Blur(y , t, h0) =

x∈Rn

Gn(x − y , t)h0(x) dy

B. Fasy (Duke CS) Prelim 26 July 2010 22 / 46

Scale Space

Homotopy

H : M × I → R is a continuous function such that

H(x , 0) = f (x)

H(x , 1) = g(x)

B. Fasy (Duke CS) Prelim 26 July 2010 23 / 46

Scale Space

Discrete Homotopy

H : vert(K ) × {0, 1, . . . , τ} → R is a discrete function such that

H(x , 0) = f (x)

H(x , τ) = g(x)

15

76

9

410

12

212

H(·, 0)

H(·, 1)

H(·, 2)

B. Fasy (Duke CS) Prelim 26 July 2010 23 / 46

Scale Space

Discrete Homotopy

H : K × Iτ → R is a discrete function such that

H(x , 0) = f (x)

H(x , τ) = g(x)

and the value at a general point (x , t) ∈ M × Iτ is determined by linearinterpolation.

8

4

12

212

13

76

10

H(·, 0)

H(·, 1)

H(·, 2)

H(x, 0.5) = 9

B. Fasy (Duke CS) Prelim 26 July 2010 23 / 46

Scale Space

Heat Equation Homotopy

Let f (x), g(x) : R2 → R.

Let h0(x) = f (x) − g(x).Then:

H(y , t) = ht(y) = Blur(y , t, h0) =

x∈Rn

Gn(x − y , t)h0(x) dy

is the solution to the heat equation with initial condition H(x , 0) = h0(x).

B. Fasy (Duke CS) Prelim 26 July 2010 24 / 46

Scale Space

Heat Equation Homotopy

Let f (x), g(x) : R2 → R.

Let h0(x) = f (x) − g(x).Then:

H(y , t) = ht(y) = Blur(y , t, h0) =

x∈Rn

Gn(x − y , t)h0(x) dy

is the solution to the heat equation with initial condition H(x , 0) = h0(x).

We define the Heat Equation Homotopy as:

H(x , t) := ht(x) + g(x).

B. Fasy (Duke CS) Prelim 26 July 2010 24 / 46

Scale Space

Questions

1 Tight Bound: Is the inequality

|ℓ1 − ℓ2| ≤4

π· (κ1 + κ2) · F(γ1, γ2)

a tight bound for curves in Rn for n > 3?

2 Simultaneous Scale Space: What happens if multipleagents are diffusing at the same time?

3 Understanding Vq: Does there exist a stability resultfor Vq?

B. Fasy (Duke CS) Prelim 26 July 2010 25 / 46

Scale Space

Color Images

B. Fasy (Duke CS) Prelim 26 July 2010 26 / 46

Scale Space

Color Images

t = 0

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

t = 100

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

t = 1000

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

B. Fasy (Duke CS) Prelim 26 July 2010 26 / 46

Scale Space

Proportion Set

A proportion set for the RGB image is the set of pixels that have the sameratios of colors. For example, the boundaries in the following imagesdepict where 4*blue = 3*green:

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

t = 0

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

t = 100

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

t = 1000

B. Fasy (Duke CS) Prelim 26 July 2010 27 / 46

Scale Space

Questions

1 Tight Bound: Is the inequality

|ℓ1 − ℓ2| ≤4

π· (κ1 + κ2) · F(γ1, γ2)

a tight bound for curves in Rn for n > 3?

2 Simultaneous Scale Space: What happens if multipleagents are diffusing at the same time?

3 Understanding Vq: Does there exist a stability resultfor Vq?

B. Fasy (Duke CS) Prelim 26 July 2010 28 / 46

Vineyard Distance

Part 3

B. Fasy (Duke CS) Prelim 26 July 2010 29 / 46

Vineyard Distance

Persistence Diagrams

A set of points in R2 that

describe the changing homologyof the sublevel sets of a function

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

8

7

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

8

7

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

8

7

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

8

7

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

8

7

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

8

7

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

8

7

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

8

7

B. Fasy (Duke CS) Prelim 26 July 2010 30 / 46

Vineyard Distance

Stacking the Persistence Diagrams

We stack the diagrams so that Dgmp(ht) is drawn at height z = t.

B. Fasy (Duke CS) Prelim 26 July 2010 31 / 46

Vineyard Distance

Stacking the Persistence Diagrams

Then, we match the diagrams using a linear time algorithm [CSEM].

B. Fasy (Duke CS) Prelim 26 July 2010 32 / 46

Vineyard Distance

Vineyards

The path of an off-diagonal point is called a vine. A vine isrepresented by a function s : Iτ → R

3.

The collection of vines is called a vineyard.

Matching of Dgmp(f ) and Dgmp(g) is obtained by looking at theendpoints of the vines.

B. Fasy (Duke CS) Prelim 26 July 2010 33 / 46

Vineyard Distance

Another Representation of a Vineyard

[Movie]

B. Fasy (Duke CS) Prelim 26 July 2010 34 / 46

Vineyard Distance

Total Movement in a Vineyard

For a vine s, we can compute the weighted distance traveled by a point inthe persistence diagrams. Then, we sum this distance over all vines in thevineyard V .

Ds =

∫ 1

0ωs(t) ·

∂s(t)

∂tdt

Vq(H) =

(

s∈V

Dqs

)1/q

B. Fasy (Duke CS) Prelim 26 July 2010 35 / 46

Vineyard Distance

Total Movement in a Vineyard

For a vine s, we can compute the weighted distance traveled by a point inthe persistence diagrams. Then, we sum this distance over all vines in thevineyard V .

Ds =∑

i∈{1,2,...,τ}

ωs(i) · ||s(ti ) − s(ti−1)||∞

Vq(H) =

(

s∈V

Dqs

)1/q

B. Fasy (Duke CS) Prelim 26 July 2010 35 / 46

Vineyard Distance

Questions

1 Tight Bound: Is the inequality

|ℓ1 − ℓ2| ≤4

π· (κ1 + κ2) · F(γ1, γ2)

a tight bound for curves in Rn for n > 3?

2 Simultaneous Scale Space: What happens if multipleagents are diffusing at the same time?

3 Understanding Vq: Does there exist a stability resultfor Vq?

B. Fasy (Duke CS) Prelim 26 July 2010 36 / 46

Vineyard Distance

Related Metrics

Let A = Dgm(f ) and B = Dgm(g).We find a bijection between A and B by minimizing some quantity, suchas:

Bottleneck Distance

Wasserstein Distance

B. Fasy (Duke CS) Prelim 26 July 2010 37 / 46

Vineyard Distance

Bottleneck Matching

The bottleneck cost of a matching is the maximum L∞ distance betweenmatched points:

W∞(P) = max(a,b)∈P

||a − b||∞.

We seek to minimize the bottleneck distance over all perfect matchings:

W∞(A, B) = minP

{W∞(P)}.

B. Fasy (Duke CS) Prelim 26 July 2010 38 / 46

Vineyard Distance

Wasserstein Matching

The Wasserstein cost is measures the cumulative distance as follows:

Wq(P) =

(a,b)∈P

||a − b||q∞

1/q

.

We seek to minimize the Wasserstein distance over all perfect matchings:

Wq(A, B) = minP

{Wq(P)}.

B. Fasy (Duke CS) Prelim 26 July 2010 39 / 46

Vineyard Distance

Related Stability Results

We say that the matching of persistence diagrams is stable if the cost ofthe matching is bounded by some reasonable function of ||f − g ||∞.

[CSEH] The Bottleneck Distance is stable for monotone Functionsf , g : M → R.

W∞(A, B) ≤ ||f − g ||∞[CSEHM10] The Wasserstein Distance is stable for tame LipschitzFunctions with bounded degree k total persistence.

Wq(A, B) ≤ C 1/q||f − g ||1−k/q∞

B. Fasy (Duke CS) Prelim 26 July 2010 40 / 46

Vineyard Distance

Related Stability Results

We say that the matching of persistence diagrams is stable if the cost ofthe matching is bounded by some reasonable function of ||f − g ||∞.

[CSEH] The Bottleneck Distance is stable for monotone Functionsf , g : M → R.

W∞(A, B) ≤ ||f − g ||∞[CSEHM10] The Wasserstein Distance is stable for tame LipschitzFunctions with bounded degree k total persistence.

Wq(A, B) ≤ C 1/q||f − g ||1−k/q∞

Is the Vineyard Metric stable too?

Vq(f , g) ≤ ???

B. Fasy (Duke CS) Prelim 26 July 2010 40 / 46

Vineyard Distance

Preliminary Findings

Let A = Dgm(f ) and B = Dgm(g).

W1(A, B) ≤ V1(f , g)

W∞(A, B) ≤ V∞(f , g)

B. Fasy (Duke CS) Prelim 26 July 2010 41 / 46

Vineyard Distance

Questions

1 Tight Bound: Is the inequality

|ℓ1 − ℓ2| ≤4

π· (κ1 + κ2) · F(γ1, γ2)

a tight bound for curves in Rn for n > 3?

2 Simultaneous Scale Space: What happens if multipleagents are diffusing at the same time?

3 Understanding Vq: Does there exist a stability resultfor Vq?

B. Fasy (Duke CS) Prelim 26 July 2010 42 / 46

Questions

1 Tight Bound: Is the inequality

|ℓ1 − ℓ2| ≤4

π· (κ1 + κ2) · F(γ1, γ2)

a tight bound for curves in Rn for n > 3?

2 Simultaneous Scale Space: What happens if multipleagents are diffusing at the same time?

3 Understanding Vq: Does there exist a stability resultfor Vq?

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

B. Fasy (Duke CS) Prelim 26 July 2010 43 / 46

Thank You

My adviser, Herbert Edelsbrunner

My committee: Hubert Brey, John Harer, and Carlo Tomasi

Those who read my prelim document and provided comments,including Michael Kerber and Amit Patel.

Michelle Phillips (for making the graphics of dog and person)

Everyone here!

B. Fasy (Duke CS) Prelim 26 July 2010 44 / 46

Questions?

B. Fasy (Duke CS) Prelim 26 July 2010 45 / 46

References

G. Donald Chakerian, An Inequality for Closed Space Curves, Pacific J. Math. 12 (1962),no. 1, 53–57.

David Cohen-Steiner and Herbert Edelsbrunner, Inequalities for the Curvature of Curves

and Surfaces, Found. Comput. Math. 7 (2007), no. 4, 391–404.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer, Stability of persistence

diagrams, 2005, pp. 263–271.

David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko, Lipschitz

Functions have Lp-Stable Persistence, Found. Comput. Math. 10 (2010), no. 2, 127–139.

David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov, Vines and Vineyards by

Updating Persistence in Linear Time, 2006, pp. 119–126.

Istvan Fary, Sur Certaines Inegalites Geometriques, Acta Sci. Math. (Szeged) 12 (1950),no. aa, 117–124.

B. Fasy (Duke CS) Prelim 26 July 2010 46 / 46