경영」 9 -...

Preview:

Citation preview

서울대학교 「공학기술과 경영」 9강

1. 석유화학과 폴리올레핀

2. 폴리올레핀 (종류, 용도, 가공)

3. 폴리올레핀 제조공정

4. 올레핀 중합촉매

Ziegler-Natta 촉매

Metallocene 촉매

5. 한화토탈의 촉매개발 및 상업적용 사례

목 차

석유화학과 폴리올레핀

석유/납사 및 천연가스로부터 화학 기초유분을 생산하고, 이를 원료로 각종

중간 유도품과 합성수지(플라스틱), 합성섬유(폴리에스터, 나일론 등), 합성고무

등의 기초 화학소재를 생산하는 산업

석유화학산업?

우리나라의 석유화학 산업

세계 4위 생산규모(’14년)

- 국내 에틸렌 생산규모: 8.5 백만톤/년

- 세계 점유율: 1.9%(’90) → 5.3%(’14)

국내 제조업 중 4위 규모

- 생산액: 110조원

- 제조업 비중: 2.8% (’90) → 7.4%(’13)

국내 5위 수출품목

- 수출: 482 억불(총수출의 8.4%)

- 무역수지: 21억불 (’90) → 318억불(‘14)

*Source : 한국석유화학협회

Ethylene Capacity (2014)

세계 Polyolefin 산업

Major polymer 총수요(‘14): 2.24억톤

Polyolefins 수요: 1.43억톤 (62%)

- PP 5,800만톤, PE 8,500만톤

국내 Polyolefin 산업

총 생산능력: 930만톤/년

- PP : 8개사 424 만톤

- PE : 7개사 500만톤

한화토탈: 140만톤/년

- PP 3개 라인 70만톤

- PE 4개 라인, 70만톤

폴리올레핀 산업

폴리올레핀

1. 폴리올레핀 종류

2. 용도

3. 가공방법

Polyolefin의 종류

PE (polyethylene) • LDPE (low density PE)

• EVA (ethylene-vinylacetate copolymer)

• HDPE (high density PE)

• LLDPE (linear low density PE)

• UHMWPE (ultra-high molecular weight PE)

PP (polypropylene) • Homo-PP

• Random PP (propylene/ethylene)

• Ter-PP (propylene/ethylene/butene-1)

• Block PP (homo-PP+EPR)

Rubber/Elastomer • EPR (ethylene-propylene rubber)

• EPDM (ethylene-propylene-diene monomer)

• POE (polyolefin elastomer, ethylene/octene-1)

Specialty Polymer • PB-1 (polybutene-1)

• PMP (poly(4-methylepentene-1))

• COC (cyclic olefin copolymer, norbornene/ethylene)

LLDPE density 0.920~0.945 g/cc HDPE density 0.945~0.965 g/cc

LDPE density 0.915~0.925 g/cc

EVA VAM content : max 30wt%

Polyethylene (PE)

Isotactic PP

Syndiotactic PP

Atactic PP

Polypropylene (PP)

포화탄화수소 구조의 결정성 고분자

뛰어난 화학적 안정성

친환경적 (무독, 무취)

Recyclable

가격대비 우수한 물성

물성조절 용이 (분자량, 분자량분포, 공중합)

Melting temperature

HDPE: 130~135℃

PP : 160~165℃

PE, PP 소재의 특징

Amorphous Crystalline

High performance polymer

Basic polymer

Technical polymer

PA6/66

UHMWPE

PP

HDPE LDPE

PPS PA4,6

PBT/PET

POM

LCP

FP

PEK

PMMA

SAN PS

PVC

PPO

SMA ABS

PC

PES

PSU

PI

COC/COP

PEI

EVA

LLDPE

LDPE LLDPE/HDPE Iso-PP Syndio-PP

Density(g/cc) 0.915-0.935 0.915-0.965 0.91-0.92 0.89-0.91

Tm 95-120 ℃ 115-135℃ 160-165℃ 140-150℃

Tg -100 ℃ -100℃ -20℃ - 6℃

Young Modulus (GPa)

< 0.3 <1.0 1.4

Solvent resistance

medium high high medium

PP의 결정모양

PE, PP 수지의 용도

생활용품 식품용기/포장

의료용품

전기전자

건축/농업

자동차 경량화 (연비향상)

- PP 비중 0.92 g/cc

차체 중량의 10~15%는 plastics 소재,

그 중 절반이 폴리올레핀 소재

자동차소재 (PP, PP compound)

PE Pipe (portable water and gas supply)

LTHS(Long Term Hydrostatic Strength) ⇒ 50년 수명 보장

Encapsulation Layer of Solar Cell (EVA)

Ethylene-Vinylacetate copolymer

EVA Sheet

UHMWPE (Ultra High Molecular Weight PE)

• 인장강도, 내마모성, 내충격성 탁월

방탄복

Extrusion (압출성형)

Injection Molding (사출성형)

Blow Molding (중공성형)

Rotomolding (회전성형)

Compression Molding (압축성형)

Calendering (캘린더링)

Casting (캐스팅)

Vacuum Foaming (진공성형)

Foaming (발포성형)

Film

Extrusion

Injection Molding

PE, PP 수지의 가공방법

폴리올레핀 제조공정

올레핀 중합공정

Catalyst

Pre-polymerization

Polymerization

Separation/Drying

Extrusion

Monomers

PE/PP Pellet

+

Mild polymerization at low temp (10~30℃) for better polymer morphology

Removal of solvent & residual monomers

CH2=CH-R

Co-catalyst +

AlEt3

Additives

Monomers Solvent

중합공정의 종류

중합조건에 따른 분류

Solution process (high temp)

Slurry process

- Diluent slurry (iso-butane, n-hexane)

- Bulk slurry (liquid C3”)

Gas-phase process

반응기 형태에 따른 분류

Autoclave Reactor for LDPE

Tubular Reactor for LDPE (PFR)

CSTR (Continuous Stirred Tank Reactor)

Loop reactor

FBR (Fluidized Bed Reactor)

MZCR (Multi-Zone Circulating Reactor)

200~300℃, 1300~2000 bar

ICI (1938)

Autoclave LDPE Process (radical polymerization)

200~350℃

2000~3200 bar

BASF(1953) Lyondell Basell

Tubular LDPE Process (radical polymerization)

CSTR (Continuous Stirred Tank Reactor)

Mitsui’s CX HDPE Process (Hx slurry, 80℃)

Mitsui’s Hypol PP Process (C3” bulk, 70℃)

Hoechst HDPE Process (Hx slurry)

Solution PE Process (150~350℃)

Multi-reactors for broad MWD

#1 #2

Mw(1) Mw(2) ≠

Loop Reactor

• Phillips PE process (iso-butane slurry)

• LyondellBasell’s Spheripol PP Process (C3” bulk slurry)

FBR (Fluidized Bed Reactor, Gas-phase)

• Unipol PE, PP Process • BP LLDPE Process

MZCR (Multi-Zone Circulating Reactor, Gas-phase)

• Spherizone PP Process (LyondellBasell)

Residence Time Distribution

폴리올레핀 종류별 중합공정

올레핀 중합 촉매

1. Ziegler-Natta 촉매

2. Metallocene 촉매

Classification of Catalyst Types

Peroxides → LDPE, EVA 250~350℃, 2000~3000 atm

R O C OO C O R

O O

R C

O

OO C R

O

Ziegler-Natta catalysts → PE, PP

TiCl4/MgCl2, TiCl4/MgCl2/SiO2 : PE

TiCl4/ID/MgCl2 : PP

Phillips catalyst → PE (HDPE, MDPE)

Cr-type supported in SiO2

Single-site catalysts → PE, PP, POE

Metallocenes

Non-metallocene (Post-metallocenes)

(Peroxides)

Catalyst Technology Evolution Timeline

Phillips Catalyst

Catalytic sites for ethylene polymerization

Nobel Prize in Chemistry (1963)

Ziegler-Natta Catalyst

Prof. Karl Ziegler (1898~1973, Germany)

Prof. Giulio Natta (1903~1979, Italy)

Discovered TiCl4/AlEt2Cl catalyst for polyethylene at the Max-Planck Institute in Mülheim (1953)

Discovered isotactic polypropylene at the Polytechnical Institute of Milan (1954).

Historical development of Z-N catalyst

Mechanism for Ziegler-Natta Catalysis

Isotactic PP

Atactic PP

Syndiotactic PP

• High Tm (161~164℃) • High modulus • Most of commercial PP

• Low Tm (Tm 130~140℃) • Low modulus • Meta-stable crystalline structure • Not successful in commercialization

• Amorphous and sticky • Used for limited application (hot melt)

Molecular Structure of Polypropylenes

31-helical structure of iso-PP crystal

Generations of polypropylene catalysts (generations)

Commercial Z-N Catalysts for PP

Activator (cocatalyst) : Al(Et)3 ; Ti(4+) → Ti(3+)-Et

External electron donor: R2Si(OCH3)2 ; istacticity ↑

Ionic radius

Mg2+ 0.68 Å

Ti4+ 0.65 Å

Catalyst support : MgCl2

Active species : TiCl4

Internal electron donor : Phthalate, Diether, etc.

Main catalyst

Cocatalyst

Cl

Ti

Mg

π-orbitals of olefin monomer (ethylene)

The electrons from olefin’s π-bonding fit nicely into the empty orbital of titanium

The electrons from one of the filled orbitals can slip into the olefin’s π-antibonding orbital, making the titanium-olefin complex stronger (back donation)

Titanium-Olefin Complex

Propylene Insertion Mechanism

Propylene >5,000 units/Ti*/sec Polymer >1 개(Mw 20만)/Ti*/sec

Stereoregularity of Z-N Catalysts

1 1

2 2 3 3

Prochirality of adsorbed propylene

Corradini et al. Acc. Chem. Res. 2004

si-enantioface

ED

Ti

Mg

propylene

C

Mg

Cl Ti

polymer chain

ED

re-enantioface

Stereoselective propylene insertion

Adsorption of Internal Donors on MgCl2

Three types of adsorption modes on MgCl2 surface

Chelate Mode on (110)

Bridge Mode on (110) and (100)

Zip Mode on (110)

zip

(110)

bridge

bridge

chelate

MgCl2 support

Correa et al. Macromolecules 2007

Catalyst & Polymer Morphology

Replication of catalyst morphology

5min 20s 2hrs

Porous catalyst

Non-porous catalyst

Fragmentation of catalyst particle

6 sec(1.8g-PP/g-Cat) 1 min (10-14 g-PP/g-Cat) 30 min (450 g-PP/g-Cat)

Dark spots : catalyst fragments

Monomer diffusion effect

Idealized simulation to demonstrate the effect of

particle morphology on mass transfer resistance

R

r CBulk

C

C, CBulk : Monomer concentration

r : Distance from particle center

R : Radius of the particle

III

II

I III : Intrinsic activity of a very porous particle

(no diffusion limitation)

Rp(r) = k(t)*C(r, t)

올레핀 중합 촉매

1. Ziegler-Natta 촉매

2. Metallocene 촉매

Metallocene Complexes ?

Ferrocene “Sandwich structure” (G. Wilkinson & R. B. Woodward, 1952)

?

Ferrocene

6e-

6e-

d6e-

18e-

(stable)

2+

M = Ti, Zr, Hf

-

-

Metallocene catalysts for polyolefins

Professor Walter Kaminsky (University of Hamburg)

1952 Ferrocene (Fisher & Wilkinson) 1973 Addition of small amount of water increased activity (Meyer & Breslow) 1977 Discovered MAO (AlMe3+H2O) and high activity Cp2ZrMe2/MAO system (W. Kaminsky & Sinn) → 10,000 times increase of catalyst activity “Kaminsky Catalyst” 1982 C2-symmetry ansa-metallocene (Brintzinger) 1984 Isotactic PP from ansa-metallocenes (John A. Ewen)

Historical development of metallocene catalysts

PE catalyst technoloty Evolution Timeline

Examples of Metallocene Catalysts

C2-symmetry (ansa-metallocene)

Isotactic PP

For polyethylene

For polypropylene

Syndiotactic PP

Cs-symmetry

LLDPE, POE

rac-Et(Ind)2ZrCl2 (ansa-metallocene)

Stereoselective insertion of monomers

Cocatalysts for Metallocenes

MAO (methylalumoxane) Borane & Borate

Plausible structures of MAO

Polyethylene

Metallocene Ziegler-Natta

• Narrow MWD • Broad MWD

• Homogeneous

comonomer

distribution

• Heterogeneous comonomer distribution

• High dart impact strength & optical property

Metallocene Ziegler-Natta

• Narrow MWD • Broad MWD

• More insertion errors

• Less insertion errors

• Lower hexane- extractable

• Higher Tm and higher flex. modulus

Isotactic Polypropylene

Metallocene vs. Ziegler-Natta

한화토탈의 촉매기술

촉매개발 및 상업적용사례

Polyolefin R&D

R&D

Product & application

Catalyst Process

Morphology

Isotacticity

C2=, C4= response

Mol. wt Distribution

H2 response

Activity

Catalyst Design

Support

I/D, E/D

I/D, E/D I/D, E/D

Support, I/D

Support, I/D

물성

가공성 물성

공정운전성

생산성

공정운전성 (MI 조절)

제품범위 (random, ter, block)

I/D (Internal Donor) E/D (External Donor)

핵심요소기술

한화토탈의 촉매기술 개발

DMol3 program included in Material Studio

Cluster model to describe (110) and (100) surface of MgCl2 support

Spin-unrestricted electronic state to calculate Ti3+ electronic state

Computational Calculation (DFT)

Theoretical Approach for Catalyst Design

Prediction of catalytic activity and isotacticity from internal and external donors’ structure

Design of new internal donors

Development of new high performance catalysts

Prediction of catalyst activity

Background

Phthalate Donors

Chelate mode

Zip mode

ΔEad =-42.7kcal/mol

ΔEads = -43.3 kcal/mol

Prediction of isotacticity

각 공정별 특화된 고성능 촉매기술

HDPE LLDPE PP (Hypol) PP (Spherizone)

①일반 HDPE용 고활성 촉매

②미분체형 PE용 촉매 (morphology 우수)

③UHMWPE용 촉매

①고투명, 고장력 필름용 metallocene 촉매

②LDPE-like LLDPE용 Met 촉매

①고활성/고입체규칙성 촉매 (25㎛, 球形)

②Non-phthalate PP 촉매

①고활성/고입체규칙성 촉매 (70㎛, 球形)

Z-N 촉매

Z-N 촉매

담지형 Metallocene

고활성 Z-N

CMR-free Z-N

고성능 Z-N

촉매 문제에 의한 공정 트러블 사례 (Pilot Plant)

촉매 morphology 불량 (BD, fines), 과반응

고성능 PP 촉매 (excellent activity and morphology)

Polymer Catalyst particles

울산석유화학단지

여수석유화학단지

대산석유화학단지

한화토탈

한화종합화학

LG화학

롯데케미칼

현대오일뱅크

한화토탈

(Hanwha Total Petrochemical Co., Ltd) 매출(2015): 8.3조원

에틸렌 생산능력: 109만톤/년

주제품: 합성수지, 기초유분/화성제품, 석유제품

합성수지 142만톤/년

- LDPE/EVA 40만톤, HDPE/LLDPE 30만톤,

PP 72 만톤

R&D 분야

촉매(중합, 화성)

수지제품

복합수지

공정

화성/에너지

선행기술

Recommended