Intro and Basic Concepts-Therm

Preview:

DESCRIPTION

thermodynamics

Citation preview

  • M.BahramiENSC388(F09)IntroandBasicConcepts 1

    BasicConceptsofThermodynamicsEverysciencehasitsownuniquevocabularyassociatedwithit.Precisedefinitionofbasicconcepts formsasound foundation fordevelopmentofascienceandpreventspossiblemisunderstandings.Carefulstudyoftheseconceptsisessentialforagoodunderstandingoftopicsinthermodynamics.ThermodynamicsandEnergyThermodynamicscanbedefinedas thestudyofenergy,energytransformationsand itsrelationtomatter.Theanalysisofthermalsystemsisachievedthroughtheapplicationofthe governing conservation equations, namely Conservation of Mass, Conservation ofEnergy (1st lawof thermodynamics), the2nd lawof thermodynamicsand thepropertyrelations.Energycanbeviewedastheabilitytocausechanges.First law of thermodynamics: one of the most fundamental laws of nature is theconservationofenergyprinciple. It simplystates thatduringan interaction,energycanchangefromoneformtoanotherbutthetotalamountofenergyremainsconstant.Second law of thermodynamics: energy has quality as well as quantity, and actualprocessesoccurinthedirectionofdecreasingqualityofenergy.Whenever there is an interaction between energy and matter, thermodynamics isinvolved. Some examples include heating and airconditioning systems, refrigerators,waterheaters,etc.DimensionsandUnitsAny physical quantity can be characterized by dimensions. The arbitrary magnitudesassignedtothedimensionsarecalledunits.Therearetwotypesofdimensions,primaryorfundamentalandsecondaryorderiveddimensions.Primarydimensionsare:mass,m;length,L;time,t;temperature,TSecondarydimensionsaretheonesthatcanbederivedfromprimarydimensionssuchas:velocity(m/s2),pressure(Pa=kg/m.s2).TherearetwounitsystemscurrentlyavailableSI(InternationalSystem)andUSCS(UnitedStatesCustomarySystem)orEnglishsystem.We,however,willuseSIunitsexclusivelyinthiscourse.TheSIunitsarebasedondecimal relationshipbetweenunits.TheprefixesusedtoexpressthemultiplesofthevariousunitsarelistedinTable11.

    Table1:StandardprefixesinSIunits.MULTIPLE 1012 109 106 103 102 103 106 109 1012PREFIX tetra,T giga,G mega,M kilo,k centi,c mili,m micro, nano,n pico,p

  • M.BahramiENSC388(F09)IntroandBasicConcepts 2

    Important note: in engineering all equationsmust be dimensionally homogenous. Thismeansthateveryterminanequationmusthavethesameunits.Itcanbeusedasasanitycheckforyoursolution.Example1:UnitConversionTheheatdissipationratedensityofanelectronicdeviceisreportedas10.72mW/mm2bythemanufacturer.ConvertthistoW/m2.

    2

    2

    2 1072010001

    1100072.10

    mW

    mWW

    mmm

    mmmW

    ClosedandOpenSystemsAsystem isdefinedasaquantityofmatteroraregion inspacechosen forstudy. Themassorregionoutsidethesystemiscalledthesurroundings.

    Fig.1:System,surroundings,andboundaryBoundary:therealorimaginarysurfacethatseparatesthesystemfromitssurroundings.Theboundariesofasystemcanbefixedormovable.Mathematically,theboundaryhaszerothickness,nomass,andnovolume.Closedsystemorcontrolmass:consistsofafixedamountofmass,andnomasscancrossitsboundary.But,energy inthe formofheatorwork,cancrosstheboundary,andthevolumeofaclosedsystemdoesnothavetobefixed.Opensystemorcontrolvolume:isaproperlyselectedregioninspace.Itusuallyenclosesadevicethat involvesmassflowsuchasacompressor.Bothmassandenergycancrosstheboundaryofacontrolvolume.Importantnote:somethermodynamicsrelationsthatareapplicabletoclosedandopensystemsaredifferent.Thus,itisextremelyimportanttorecognizethetypeofsystemwehavebeforestartanalyzingit.Isolated system:Aclosed system thatdoesnotcommunicatewith the surroundingsbyanymeans.Rigidsystem:Aclosedsystemthatcommunicateswiththesurroundingsbyheatonly.

    SYSTEMBOUNDARY

    SURROUNDINGS

  • M.BahramiENSC388(F09)IntroandBasicConcepts 3

    Adiabatic system: A closed or open system that does not exchange energy with thesurroundingsbyheat.

    Fig.2:Closedsystem,masscannotcrosstheboundaries,butenergycan.

    Fig.3:Controlvolume,bothmassandenergycancrosstheboundaries.

    EnergyInthermodynamics,wedealwithchangeofthetotalenergyonly.Thus,thetotalenergyofasystemcanbeassignedavalueofzeroatsomereferencepoint. Totalenergyofasystemhastwogroups:macroscopicandmicroscopic.Macroscopic forms of energy: forms of energy that a system posses as awholewithrespect to some outside reference frame, such as kinetic and potential energy. Themacroscopicenergyofasystem isrelatedtomotionandthe influenceofsomeexternaleffectssuchasgravity,magnetism,electricity,andsurfacetension.

    energy

    mass

    CLOSEDSYSTEMm =const.

    mass

    energy

    CONTROLVOLUME

  • M.BahramiENSC388(F09)IntroandBasicConcepts 4

    Kinetic energy: energy that a system posses as a result of its relativemotionrelativetosomereferenceframe,KE

    kJmVKE2

    2

    whereVisthevelocityofthesystemin(m/s). Potentialenergy:istheenergythatasystempossesasaresultofitselevationinagravitationalfield,PE

    kJmgzPE wheregisthegravitationalaccelerationandzistheelevationofthecenterofgravityofthesystemrelativetosomearbitraryreferenceplane.

    Microscopicformsofenergy:arethoserelatedtomolecularstructureofasystem.Theyareindependentofoutsidereferenceframes.Thesumofmicroscopicenergyiscalledtheinternalenergy,U.Thetotalenergyofasystemconsistsofthekinetic,potential,andinternalenergies:

    kJmgzmVUPEKEUE 2

    2

    where the contributions of magnetic, electric, nuclear energy are neglected. Internalenergy isrelated to themolecularstructureand thedegreeofmolecularactivityand itmaybeviewedasthesumofthekineticandpotentialenergiesofmolecules.

    Thesumof translational,vibrational,androtationalenergiesofmolecules is thekinetic energy of molecules, and it is also called the sensible energy. At highertemperatures,systemwillhavehighersensibleenergy.

    Internalenergyassociatedwith thephaseofa system iscalled latentheat.Theintermolecularforcesarestrongestinsolidsandweakestingases.

    The internal energy associated with the atomic bonds in a molecule is calledchemicalorbondenergy. The tremendousamountofenergyassociatedwith thebondswithinthenucleolusofatomitselfiscalledatomicenergy.

    Energyinteractionswithaclosedsystemcanoccurviaheattransferandwork.

  • M.BahramiENSC388(F09)IntroandBasicConcepts 5

    Fig.14:Formsofenergy.

  • M.BahramiENSC388(F09)IntroandBasicConcepts 6

    PropertiesofaSystemAny characteristic of a system is called a property. In classical thermodynamics, thesubstanceisassumedtobeacontinuum,homogenousmatterwithnomicroscopicholes.Thisassumptionholdsaslongasthevolumes,andlengthscalesarelargewithrespecttotheintermolecularspacing.Intensiveproperties:arethosethatareindependentofthesize(mass)ofasystem,suchastemperature,pressure,anddensity.Theyarenotadditive.Extensive properties: values that are dependant on size of the system such asmass,volume,andtotalenergyU.Theyareadditive.

    Generally,uppercaselettersareusedtodenoteextensiveproperties(exceptmassm), and lower case letters are used for intensive properties (except pressure P,temperatureT).

    Extensive properties per unit mass are called specific properties, e.g. specificvolume(v=V/m).

    Fig.15:Intensiveandextensivepropertiesofasystem.

    StateandEquilibriumAtagivenstate,allthepropertiesofasystemhavefixedvalues.Thus,ifthevalueofevenonepropertychanges,thestatewillchangetodifferentone.Inanequilibriumstate,therearenounbalancedpotentials(ordrivingforces)withinthesystem. A system in equilibrium experiences no changes when it is isolated from itssurroundings.

    Thermal equilibrium:when the temperature is the same throughout the entiresystem.

    mVTP

    0.5m0.5VTP

    0.5m0.5VTP

    extensiveproperties

    intensiveproperties

  • M.BahramiENSC388(F09)IntroandBasicConcepts 7

    Mechanicalequilibrium:whenthere isnochange inpressureatanypointofthesystem. However, the pressuremay varywithin the system due to gravitationaleffects.

    Phaseequilibrium: inatwophasesystem,whenthemassofeachphasereachesanequilibriumlevel.

    Chemical equilibrium: when the chemical composition of a system does notchangewithtime,i.e.,nochemicalreactionsoccur.

    ProcessesandCyclesAnychangeasystemundergoesfromoneequilibriumstatetoanotheriscalledaprocess,andtheseriesofstatesthroughwhichasystempassesduringaprocessiscalledapath.

    Fig.6:Tospecifyaprocess,initialandfinalstatesandpathmustbespecified.

    Quasiequilibriumprocess: canbeviewedasa sufficiently slowprocess thatallows thesystemtoadjustitself internallyandremainsinfinitesimallyclosetoanequilibriumstateat all times. Quasiequilibrium process is an idealized process and is not a truerepresentationoftheactualprocess.Wemodelactualprocesseswithquasiequilibriumones.Moreover,theyserveasstandardstowhichactualprocessescanbecompared.Processdiagramsareusedtovisualizeprocesses.Notethattheprocesspath indicatesaseriesofequilibrium states,andwearenotable to specify the states foranonquasiequilibriumprocess.Prefixisoisusedtodesignateaprocessforwhichaparticularpropertyisconstant.

    Isothermal:isaprocessduringwhichthetemperatureremainsconstant Isobaric:isaprocessduringwhichthepressureremainsconstant Isometric:isprocessduringwhichthespecificvolumeremainsconstant.

    Asystemissaidtohaveundergoneacycleifitreturnstoitsinitialstateattheendoftheprocess.

    State2

    State1

    Processpath

    A

    B

  • M.BahramiENSC388(F09)IntroandBasicConcepts 8

    Fig.17:AfourprocesscycleinaPVdiagram.

    The stateofasystem isdescribedby itsproperties.Thestateofasimplecompressiblesystemiscompletelyspecifiedbytwoindependent,intensiveproperties.A system is called simple compressible system in the absence of electrical,magnetic,gravitational,motion,andsurfacetensioneffects(externalforcefields).Independentproperties: twopropertiesare independent ifoneproperty canbevariedwhiletheotheroneisheldconstant.PressurePressureistheforceexertedbyafluidperunitarea.

    PamN 2Area

    ForcePressure Influids,gasesandliquids,wespeakofpressure;insolidsthisisstress.Forafluidatrest,thepressureatagivenpointisthesameinalldirections.

    Fig.8:Pressureofafluidatrestincreaseswithdepth(duetoaddedweight),butconstant

    inhorizontalplanes.

    V

    P

    1

    2

    3

    4

    P(z)

    z

    Area=A

    ghPAAhg

    AmgP

    P

    Area

    liquid ofWeight

    h

    A

  • M.BahramiENSC388(F09)IntroandBasicConcepts 9

    Theactualpressureatagivenpositioniscalledtheabsolutepressure,anditismeasuredrelativetoabsolutevacuum.

    gaugepressure=absolutepressureatmosphericpressure

    atmabsatmvac

    atmatmabsgauge

    PPPPPPPPPP

    Fig.9:Absolute,gauge,andvacuumpressures.

    Inthermodynamicscalculations,alwaysuseabsolutepressure.Mostpressuremeasuringdevicesarecalibrated to read zero in theatmosphere (theymeasurePgauge orPvac).Beawareofwhatyouarereading!AdevicethatmeasurespressureusingacolumnofliquidiscalledaManometer.Thecrosssectionalareaofthetubeisnotimportant.Themanometermeasuresthegaugepressure.

    Fig.10:Basicmanometer,P2=P1.

    kPaghPP atm 1

    Patm

    Pgauge

    Pabs

    Absolute(vacuum)=0

    P

    Pvac

  • M.BahramiENSC388(F09)IntroandBasicConcepts 10

    BourdonTubeisadevicethatmeasurespressureusingmechanicaldeformation.PressureTransducersaredevicesthatusepiezoelectricstomeasurepressure. veryaccurateandrobust canmeasurefrom106to105atm canmeasurePgaugeorPabs Barometerisadevicethatmeasuresatmosphericpressure.Itisamanometerwithanearvacuumononeend

    Fig.11:Burdongauge.

    Example2:PressureThepistonofacylinderpistondevicehasamassof60kgandacrosssectionalareaof0.04m2,asshown inFig.12.Thedepthof the liquid in thecylinder is1.8mandhasadensityof1558kg/m3.The localatmosphericpressure is0.97bar,andthegravitationalaccelerationis9.8m/s2.Determinethepressureatthebottomofthecylinder.Solution:thepressureatthebottomofthecylindercanbefoundfromthesummationoftheforcesduetoatmosphericpressure,pistonweight,andtheweightoftheliquidinthecylinder.

    ghAmgPP

    WWAPW

    atmbottom

    Pistonliquidatmbottom

  • M.BahramiENSC388(F09)IntroandBasicConcepts 11

    bars

    mNbar

    smkgmN

    msmmkgm

    smkgbarPbottom

    3918.1/10

    1./1

    /1

    8.1/8.9/155804.0

    /8.96097.0

    252

    2

    232

    2

    Fig.12:Sketchforexample2.

    TemperatureTemperatureisapointerforthedirectionofenergytransferasheat.

    Fig.13:Heattransferoccursinthedirectionofhighertolowertemperature.

    Whenthetemperaturesoftwobodiesarethesame,thermalequilibriumisreached.Theequalityoftemperatureistheonlyrequirementforthermalequilibrium.The0thlawofthermodynamics:statesthatiftwobodiesareinthermalequilibriumwithathirdbody,theyarealsointhermalequilibriumwitheachother.The0th lawmakesathermometerpossible.

    A=0.04m2

    h=1.8m

    P=?

    mPiston =60kgPatm=0.97bar

  • M.BahramiENSC388(F09)IntroandBasicConcepts 12

    In accordancewith the 0th law, any system that possesses an equation of state thatrelates temperature T to other accurately measurable properties can be used as athermometere.g.anidealgasobeystheequationofstate:

    mRPVT

    ExperimentallyobtainedTemperatureScales:theCelsiusandFahrenheitscales,arebasedonthemeltingandboilingpointsofwater.Theyarealsocalledtwopointscales.Conventional thermometry depends onmaterial properties e.g.mercury expandswithtemperatureinarepeatableandpredictablewayThermodynamic Temperature Scales (independent of the material), the Kelvin andRankinescales,aredeterminedusingaconstantvolumegasthermometer.

Recommended