Kap 6: Termokemi - IFM...systemets entalpiökning, + ΔH, eller entalpi-minskning, - ΔH, lika med...

Preview:

Citation preview

Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme

Termodynamikens första huvudsats: Energi är oförstörbar – kan omvandlas från en form till en annan men kan ej förstöras.

Enhet: J (joule) cal (kalorier)

Kemisk energi Genom en kemisk reaktion kan energi i form av värme utvinnas: CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (g) + VÄRME Metans förbränning För att kunna diskutera energi i samband med kemiska reaktioner delar man upp universum i två delar: SYSTEM OMGIVNING reaktanter och produkter

Systemet och omgivningen Vi kan aldrig mäta vad som sker i systemet men vi kan mäta på omgivningen och dra slutsats om vad som sker i systemet.

EXOTERM REAKTION: SYSTEM VÄRME TILL OMGIVNINGEN

ENDOTERM REAKTION: SYSTEM VÄRME TAS FRÅN OMGIVNINGEN Förbränning av metan – exoterm eller endoterm reaktion?

Var kommer energin ifrån? Energiinnehållet hos enskilda ämnen beror av bindnings-styrkan hos de bindningar som håller ihop molekylen. Om energiinnehållet hos reaktanterna är större än energiinnehållet hos produkterna är reaktionen exoterm och vice versa. EXOTERM REAKTION ENDOTERM REAKTION

Energiförändringar Ett systems energi kan ändras genom att: • ett arbete utförs på systemet eller av systemet • värme tillförs eller avges ΔE = q + w där q är värme och w är arbete

Energiförändringar

För att inte alltid behöva beskriva energiför-ändringar med ord har man definierat att om energi tillförs systemet så får energin positivt tecken, + ΔE. (Man ser alltså utifrån systemets synvinkel!)

Exoterm reaktion: Energi avges från systemet till omgivningen: - ΔE Endoterm reaktion: Energi tillförs systemet från omgivningen: + ΔE

Vad är det för typ av arbete som förknippas med en kemisk reaktion?

Tryck-volym-arbete: När en gas utvecklas och expanderas kan den utföra ett arbete medan ett arbete utförs på en gas när den komprimeras. Jfr. bilmotor Arbetet som en gas utövar kan beräknas w = - p · ΔV p är trycket gasen jobbar emot och ΔV är förändringen i gasens volym

Entalpi ENTALPI = en förenings värmeinnehåll Entalpi, H, definieras som H = E + p · V där E är systemets energiinnehåll. I en process som sker vid konstant tryck är systemets entalpiökning, + ΔH, eller entalpi-minskning, - ΔH, lika med den värmemängd som systemet upptagit från eller avgivit till omgiv-ningen. Man exkluderar alltså p · V-termen i sambandet ovan. 6.44

Kalorimetri För att kunna mäta hur mycket värme som krävs eller frigörs vid en kemisk reaktion används en s k KALORIMETER. Olika ämnen reagerar olika på upphettning – ett ämne kan kräva mycket värmeenergi för att höja sin temperatur 1 °C medan andra kräver mindre. Den här egenskapen kallas VÄRMEKAPACITETEN.

Värmekapaciteten Man talar om oftast om: Specifika värmekapaciteten som anger hur mycket energi som måste tillföras för att höja temperaturen hos 1 g av ett ämne 1 °C. Betecknas: s Enhet: J/°C · g Ibland ser man även: Molära värmekapaciteten som anger hur mycket energi som måste tillföras för att höja temperaturen hos 1 mol av ett ämne 1 °C. Enhet: J/°C · mol

Värmekapaciteten Ett lågt värde på den specifika värmekapaciteten innebär att det krävs mindre energi för att höja ämnets temperatur 1 °C än för ett ämne med högre värde. Ex. s(H2O(l)) = 4.18 J/°C · g s(Fe(s)) = 0.45 J/°C · g Energiförändringen kan beräknas; ΔH = s · m · ΔT där s är specifika värme- kapaciteten, m är massan och ΔT är temperatur- skillnaden 6.62

Hess’ lag: Lyder: Om man går från vissa specifika reaktanter till vissa specifika produkter är entalpiförändringen samma oavsett om reaktionen sker i ett steg eller i flera.

Jfr bergsbestigning – skillnaden i lägesenergi när du når bergets topp är densamma oavsett vilken väg du tar.

Hess’ lag: Kemiskt: När kvävgas oxideras till kvävedioxid krävs 68 kJ. N2 (g) + 2 O2 (g) → 2 NO2 (g) ΔH = 68 kJ

Den här reaktionen kan delas upp i två steg: 1. N2 (g) + O2 (g) → 2 NO (g) ΔH1 = 180 kJ 2. 2 NO (g) + O2 (g) → 2 NO2 (g) ΔH2 = - 112 kJ

Om de här två delreaktionerna samt entalpi-förändringarna summeras så fås den översta totalreaktionen.

Hess’ lag Den här reaktionen var enkel att summera men ibland måste man: • vända på en delreaktion för att erhålla önskad

summareaktion • multiplicera (ta flera gånger) en delreaktion för

att få önskad summareaktion

TÄNK DÅ PÅ ATT • om man vänder på en reaktion måste man byta

tecken på ΔH • om reaktionen multipliceras måste även stor-

leken på ΔH multipliceras

Uppgifter

Beräkna ΔH för metans förbränning, d v s CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (l) ΔHreaktion = X kJ utifrån C (s) + 2 H2 (g) → CH4 (g) ΔH1 = - 75 kJ C (s) + O2 (g) → CO2 (g) ΔH2 = - 393.5 kJ H2 (g) + ½ O2 (g) → H2O (l) ΔH3 = - 286 kJ 6.69

Standardbildningsentalpi

Med hjälp av kalometri kan man mäta tempe-raturskillnader och beräkna ΔH för många reak-tioner. Vissa reaktioner är dock så långsamma att denna metod inte fungerar. Man kan dock även räkna ut ΔH med hjälp av STANDARDBILDNINGSENTALPIER.

Standardbildningsentalpier

Standardbildningsentalpin för en förening definieras som entalpiförändringen som åtföljer bildandet av 1 mol av föreningen från dess grundämnen i deras standardtillstånd. Betecknas: ΔH°

f Enhet: kJ/mol ° symboliserar standardtillstånd, d v s det aggregationstillstånd ämnet befinner sig i vid p = 1 atm och T = 25 °C. f står för ’formation’ - bildning

Standardbildningsentalpier Exempel: Standardbildningsentalpin för ammoniak, NH3, är den entalpiförändring som åtföljer reaktionen: 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔH°

f (NH3)

Uppgift: Teckna reaktionen som förknippas med standard-bildningsentalpin för koldioxid, CO2 C (s) + O2 (g) → CO2 (g) ΔH°

f (CO2)

Standardbildningsentalpier

Om man har ΔH°f-värden för olika föreningar kan

man beräkna ΔH för en reaktion med följande formel: ΔHreaktion = Σ ΔH°

f (produkter) - Σ ΔH°f (reaktanter)

OBS!!!!!! Får bara användas om det är ΔH°

f-värden som angetts i en uppgift!

Standardbildningsentalpier

När men använder formeln ΔHreaktion = Σ ΔH°

f (produkter) - Σ ΔH°f (reaktanter)

måste man tänka på • att ΔH°

f-värden för grundämnen är 0 J/mol. • att om man har en koefficient med i reaktions-

formeln måste koefficienten med i beräkning-en.

ΔH°f-värden finns i tabell i bokens Appendix.

Uppgifter Järn framställs ur järnmalm genom reduktion med kolmonoxid, CO. Beräkna ΔH för reaktionen utifrån ΔH°

f-värden:

Fe2O3 (s) + 3 CO (g) → 2 Fe (s) + 3 CO2 (g)

ΔH°f(Fe2O3 (s)) = -825.5 kJ/mol

ΔH°f(CO (g)) = -110.5 kJ/mol

ΔH°f(CO2 (g)) = -393.5 kJ/mol

ΔHreaktion = Σ ΔH°

f (produkter) - Σ ΔH°f (reaktanter)

ΔHreaktion = (2 · 0 + 3 · -393.5) - (-825.5 + 3 · -110.5) kJ = -23.5 kJ 6.82

Recommended