PPTA354-6C Kriteria _ Kinerja Penggalian TBM

Preview:

DESCRIPTION

penggalian TBM

Citation preview

114.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

6.3. KINERJA PENGGALIAN Tunnel Boring Machines

224.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

Tunnel Boring Machines (TBMs)

The use of tunnel boring machines for underground construction has been increasing steadily for the last 30 years. However the efficient and economic use of these high capital cost machines, necessitates an intensive side and laboratory studies. The proper and correct machine performance prediction basically depends on the quality and quantity of the geological and geotechnical data collected before making the final decision.

334.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

444.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

Cutters Used for Mechanical Excavators

554.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

Performance prediction using Full scale linear cutting tests

Hypothetical relationship between specific energy and spacing/depth ratio

664.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

A typical example Tuzla-Dragos Tunnel in Istanbul

The profiles of constant cross

section (CCS) disc cutters

774.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

Machine performance prediction for Tuzla-Dragos Tunnel

Optimum specific energy value from Figure, is SE=2.1 kWh/m3 and s/d = 8-10 As a result of cutting tests it was found that FT = 8.4 kN/mm, FR = 0.64 kN/mm From machine specification cutter spacing is s=7.5cm For s/d= 8; d=7.5/8=1cm For s/d=10; d=7.5/10=0.8cm For d=8mm, total machine thrust is 36.8.8.34=2400 kN For d=10mm, total machine thrust is 36.10.8.34=3000 kN Total machine thrust must change between 2400 kN and 3000kN

884.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

PERFORMANCE PREDICITION USING THE METHOD DEVELOPED IN THE CSM USA

The CSM model for TBM performance prediction was developed by the Earth Mechanics Institute (EMI) over a time period extending over 25 years. The development efforts on the CSM model began with a theoretical analysis of cutter penetration into the rock without any adjacent cuts or free-faces. CSM model, rock compressive and tensile strengths were used as input to characterize the rock boreability by disc roller cutters. The compressive strength was used to describe the rock crushing beneath the cutter tip while the tensile strength accounted for the chip formation between adjacent cuts. Hence, using these two rock properties, a correlation was developed between cutters thrust force and the depth of penetration achieved as a function of cutter edge geometry and the cutter diameter.

994.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

Performance predicition using the method developed in the csm usa

The CSM model predicts the penetration rate without any consideration given to the influence of existing joints/fissures in the rock. To account for these effects, the model makes use of the correlation factors developed for joint effects by the Norwegian Geotechnical Institute (NTNU). Depending on joint/fissure spacing and angle that these weakness planes make with the tunnel axis (i.e. the alpha angle), NTNU has derived a set of relationships between TBM penetration rate and the fracturing factor. The CSM model results are then adjusted accordingly to account for the joint/fissure effects using the relationships similar to those developed by NTNU.

10104.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

Performance Predicition Using The Method Developed In The Norwegian Univesity Of Science

& Technology (Ntnu Model)

The prediction model is based on job site studies and statistics from 33

job sites with 230 km of tunnels. Data have been carefully mapped systematized and normalized. The methodology is well explained in ITA recommendations and guidelines for tunnel boring machines working group no 4. Specific tests such as drilling rate index, Siever J-value SJ, angle between tunnel axis and plane of

weakness, fracturing factor and several correction indexes are need for performance estimation. Mckelvey and co-workers in their comparative studies included that generally predicted penetration rates from NTNU model were significantly more comparative than the achieved penetration values.

11114.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

A Typical Overall performance of TBMs

12124.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

PrediksiPrediksi KinerjaKinerja TBMTBMM. Sapignia et all - International Journal of Rock Mechanics & Mining Sciences 39 (2002) 771–788

13134.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITBPrediksiPrediksi KinerjaKinerja TBMTBM

M. Sapignia et all - International Journal of Rock Mechanics & Mining Sciences 39 (2002) 771–788

14144.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITBPrediksiPrediksi KinerjaKinerja TBMTBM

M. Sapignia et all - International Journal of Rock Mechanics & Mining Sciences 39 (2002) 771–788

15154.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

16164.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

17174.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

18184.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

19194.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

20204.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

21214.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

22224.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- Farmer & Farmer & GlossopGlossop, 1980, 1980

V = Volume of rock excavated in unit time, m3/h RPM = Rotary speed, rev/min D = Diameter of tunnel boring machine, m t = Tensile strength. kN/m2

Fc = Average cutter force, kN

t

c DRPMFV

2..4.29

23234.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- CassinelliCassinelli et al., 1982et al., 1982

V = TBM penetration rate (m/h) RSR = Rock support rating

59.10059.0 RSRV

24244.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- LislerudLislerud et al., 1983et al., 1983

I = Net advance rate, m/h RPM = Rotary speed, rev/min i = Equal to ib.Ks.Kd, mm/rev ib : basic penetration rate Ks : Correction factor for joint class and angle Kd : Correction factor for cutter diameter

100060.. RPMiI

25254.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITBTBM TBM -- BamfordBamford, 1984, 1984

P = Penetration rate, m/h S = Schmidt hammer hardness T = Machine propel thrust force, tonne N = NCB cone indenter index, N/mm p = Angle of shearing resistance, degrees

pNTSP 0137.0000823.000344.049.8535.0

26264.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- SanioSanio, 1985, 1985

Po = Penetration thrust perpendicular to bedding or schistosity P90 = Penetration thrust parallel to bedding or schistosity Is50a = Point load index perpendicular to bedding or schistosity Is50b = Point load index parallel to bedding or schistosity

b

ao

IsIs

PP

50

50

90

27274.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- Hughes, 1986Hughes, 1986

V = rate of advance, m/h P = Thrust per disk periphery, kN N = Speed of cutting head, rev/s n = Average number of disk per kerf c = UCS, MPa r = Average radius of disks, m

6.02.1

2.1

r.6

c

nNPV

28284.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- Hughes, 1986Hughes, 1986

PW = Power, kW D = TBM diameter, m

207.945.28 DDPW

29294.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- Farmer & Farmer & GlossopGlossop, 1980, 1980

P = Penetration per revolution, mm/rev Fc = Average cutter force, kN c = UCS, kN/m2

c

FcP

3940

30304.3.

#

4.3.

# P

embo

ran

Pem

bora

nPe

ngga

lian

Peng

galia

nSK

SK

Dep

arte

men

Dep

arte

men

Tekn

ikTe

knik

Pert

mba

ngan

Pert

mba

ngan

ITB

ITB

TBM TBM -- Farmer & Farmer & GlossopGlossop, 1980, 1980

PR = Penetration per revolution, mm/rev FL = Average cutter force, kN t = Tensile strength, kN/m2

t

LFPR

624

Recommended