인공장기를 프린트하다 @조동우 포항공대 교수

Preview:

Citation preview

조동우포항공대����������� ������������������  교수

인공장기를����������� ������������������  프린트하다

sponsored by

RESILIENCE AND RESHAPE

Form Follows Function

Dribbble.com

Definition  of  Cell,  Tissue  and  Organ

Organ

Liver  

Heart Bone

– A  group  of  tissues  in  the  body  which  perform  a  

certain  function

Tissue

Connective  tissue

Epithelial  tissue

Muscle  tissue Nervous  tissue

– A  group  of  biological  cells  that  perform  a  similar  

function

Cell

– Structural  and  functional  unit  of  all  known  living  

organisms  – Humans  have  an  estimated  

1012  or  1014  cells

What is Tissue Engineering?

18

“  An  interdisciplinary  field  that  applies  the  principles  of  engineering  and  life  science  toward  the  development  of  biological  substitutes  that  restore,  maintain  or  improve  tissue  function  or  a  whole  organ  “,  by  Langer  and  Vacanti  

Final  goal:  Tissue/organ  regeneration

What  is  tissue  engineering?

Schematic  diagram  of  tissue  engineering

What is Tissue Engineering?

Pancreas  Blood  Vessel

Liver  

Skin    

Cartilage    

Bone  

Cell Biomolecule

Scaffold

Cells  &    Biomolecules

Biomaterials

Engineering  &  culturing In  vivo    

Integration

Seeding  

Porous  scaffold

Cell  growth Bio  Degradation Support19

3D  Printing  technology-­‐  Techniques  to  manufacture  prototypes  derived  from  complex  3D  datasets  -­‐  3D  models  generation  using  layer-­‐by-­‐layer  process

3D  CAD  model Slicing   Stacking  up

Reversely  engineered  anatomical  models  using  a  patient’s  CT  data

What is 3D Printing Technology?

5

-­‐  Installation  of  individually  controllable  6  heads-­‐Dispensing  capability  of  6  different  materials  including  cells,  proteins,  and  biomaterials  

Motion  simulation  of  MtoBS Real  motion  of  MtoBS

8

Nano-­‐Stereolithography

TMC/TMP

BMP-­‐2  loaded  scaffold(PPF/DEF)

Examples of Structure

Micro-­‐Stereolithography  (MSTL)Projection  based  Micro-­‐

Stereolithography  (pMSTL)

 Ossicles

Octangle  unit  based  structure

                     PPF/DEF                                                          PPF/DEF-­‐HA Micro-­‐patterned  structure

           micro-­‐needle

                           Spine                                                                                  LarynxVascular    network

 Tooth

Bellows  Ormocer  structure

9

Examples of Structure

Hybrid  Scaffold

Multi-­‐head  Deposition  System

Multi-­‐head  tissue/organ  Building  System

PCL                PCL/PLGA                                          PCL/PLGATCPPLGA

Sheet  Type  Scaffold Sheet  type  scaffold  for  Bio  Artificial  Pancreas

Osteochondral  pre-­‐tissue

Scaffold  for  Nasal  implant Auricular  scaffold10

Scaffold based Tissue engineering Antibiotics-Loaded Scaffolds

• Non-biodegradable • Non-controllable drug release • Restricted selection of antibiotics

(exothermic polymerization of PMMA)

Removed necrotic bone tissue & Implantation of antibiotics-loaded bone cement beads(vancomicin+PMMA)

Osteomyelitis treatment and its limtations

*  Co-­‐work  group  :  Prof.  Hae  Ryong  Song,  Department  of  Orthopaedic  Surgery,  Guro  Hospital,  Korea  University  Medical  Center

Antibiotics-loaded scaffold• Materials

• Biodegradable polymer : PCL / PLGA blended (1:1)• Heat stable antibiotics : Tobramycin (melted at 165℃)

• Advantages• Local delivery with controlled release profile • Tissue regeneration of debrided site

Procedure of tobramycin-loaded scaffold fabrication

11

Preparation of rat model of osteomyelitis

• In vivo model of rat osteomyelitis - Site of infection : tibia (upper part)- Method : S. aureus injection into the hole

on the knee joint made by drill & 2 weeks of stabilization

- Size of scaffolds : 2.5mm(Φ) x 4 mm(h)

(a) scaffolds, (b) hole on knee joint, (c) scaffold implantation

0mg/ml 50mg/ml • Experimental groups (n=4)I. Blank : No scaffold II. 0 mg/ml : PCL/PLGA scaffoldIII. 50 mg/ml : Tobramycin-loaded PCL/PLGA scaffold

Scaffold based Tissue engineering Antibiotics-Loaded Scaffolds

12

*  Co-­‐work  group  :  Prof.  Hae  Ryong  Song,  Department  of  Orthopaedic  Surgery,  Guro  Hospital,  Korea  University  Medical  Center

X-ray examination

※POD : post operation day

POD 0 = infection 2w

POD 7 POD 14

Bla

nk0

mg/

ml

50 m

g/m

l

B #3 B #3 B #3

0 #3 0 #3 0 #3

50 #1 50 #1 50 #1

*  Co-­‐work  group  :  Dr.  Sung  Eun  Kim,  Department  of  Orthopaedic  Surgery  &  Institute  of  Rare  Diseases,  Guro  Hospital,  Korea  University  Medical  Center

POD 21 POD 28

scaffold implantation

scaffold implantation

Scaffold based Tissue engineering Antibiotics-Loaded Scaffolds

13

Example of Tissue Engineering

Airway  regeneration  in  USA

•Kaiba  Gionfriddo  (3,  USA)  •Rare  birth  defect  known  as  tracheobronchomalacia

Transplanted  airway  scaffold

Before  surgery

One  year  after  surgery

•  The  world’s  first  successful  transplant  case  to  the  patient  by  using  3D  printer  and  biocompatible/biodegradable  polymer  (poly-­‐e-­‐caprolactone)  

• Patient’s  airway  model  made  by  3D  printer

• Airway  model  combined  with  airway  scaffold •  DA  Zopf  et  al.,  New  England  Journal  of  Medicine,  2013

14

Chief  complaint

15

- Min-Hyeong Heo, 18 years old- Acquired deformity by cancer (myxoid chondrosarcoma) therapy at age 10 - Asymmetric eyes’ height; Depressed malar region

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /Dr.  Won-­‐Soo  Yun,  T&R  Biofab  Co.  and  Department  of  Mechanical  Engineering,  Korea  Polytechnic  University  

Depressed

Scaffold based Tissue engineering Reconstruction of depressed malar region

Design  of  the  customized  implant  

16

- Mimics software (Materialise, Belgium)- Mirroring tool for customized implant model

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /Dr.  Won-­‐Soo  Yun,  T&R  Biofab  Co.  and  Department  of  Mechanical  Engineering,  Korea  Polytechnic  University  

Patient’s  skull  model  exported  from  CT  image

Mirrored  normal  region  model  (left  side)  into  depressed  region  (right  side)

Scaffold based Tissue engineering

Reconstruction of depressed malar region

Design  of  the  customized  implant  (Contd.)

17

- Mimics software (Materialise, Belgium)- CAD model for external shape of the implant scaffold

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /Dr.  Won-­‐Soo  Yun,  T&R  Biofab  Co.  and  Department  of  Mechanical  Engineering,  Korea  Polytechnic  University  

Mirrored  model Boolean  operation Implant  scaffold  model

Scaffold based Tissue engineering

Reconstruction of depressed malar region

Customized  implant  fabrication

18

- Poly (ε-caprolactone) (PCL, Evonik Industries, Germany)- Dispensing-based 3D printing of the customized implant scaffold (Two lay-

down patterns 0/90°, Line width: 300 μm, Pore size: 900 μm)

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /Dr.  Won-­‐Soo  Yun,  T&R  Biofab  Co.  and  Department  of  Mechanical  Engineering,  Korea  Polytechnic  University  

3D  printing  of  scaffold  with  medical-­‐grade  PCL  material 3D  printed  scaffold

Scaffold based Tissue engineering

Reconstruction of depressed malar region

Implant  scaffold  mount  on  patient’s  skull  replica

19

- Preparation of patient’s replica with 3D printing (SLS)- Mounting 3D printed scaffold to the depressed region of the replica

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /Dr.  Won-­‐Soo  Yun,  T&R  Biofab  Co.  and  Department  of  Mechanical  Engineering,  Korea  Polytechnic  University  

Implant  scaffold  model 3D  printed  scaffold Implant  mount

Scaffold based Tissue engineering

Reconstruction of depressed malar region

Implantation  of  the  3D  scaffold  

20

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /Dr.  Won-­‐Soo  Yun,  T&R  Biofab  Co.  and  Department  of  Mechanical  Engineering,  Korea  Polytechnic  University  

Implantation  of  the  printed  scaffold

Pre-­‐op post-­‐op  (4d) post-­‐op  (2wk)post-­‐op  (4wk)

Scaffold based Tissue engineering

Reconstruction of depressed malar region

21

Media  coverage

International media (3D Print.com)

Korean republic TV (MBC 뉴스데스크)

Domestic media (한국일보)

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /Dr.  Won-­‐Soo  Yun,  T&R  Biofab  Co.  and  Department  of  Mechanical  Engineering,  Korea  Polytechnic  University  

Scaffold based Tissue engineering

Reconstruction of depressed malar region

22

Advanced Biomedical Device with 3D Printing Technology Nasal reconstruction; Nergui’s stent

Congenital  agenesis  of  nose

Baramsai Nergui, Mongolian, 6-year-old

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /  Dr.  Sung-­‐won  Kim,  Department  of  Otorhinolaryngology,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)    *  Supported  by  Korea  Health  Industry  Development  Institute  and  World  Vision

Commercial  supporterAfter autotrans-plantation of rib fragment

Commercial nostril retainer

Stenosis(nasal cavity)

Problem: Support only nostril passage, not nasal cavity

Customized  stent  for  Nergui

Customized  stent  and  its  mold  design Implantation

After 1 month

Stent  removal

After 2 months

Mucous  membrane  regeneration

23

Advanced Biomedical Device with 3D Printing Technology Nasal reconstruction; Nergui’s stent

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /  Dr.  Sung-­‐won  Kim,  Department  of  Otorhinolaryngology,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)    *  Supported  by  Korea  Health  Industry  Development  Institute  and  World  Vision

- Customization of newly reconstructed nasal passage in CT images- Respiratory pathway- Removable structure without additional open surgery

Tightly fixed

3D  Printing  of  customized  stent  for  Nergui

24

Advanced Biomedical Device with 3D Printing Technology Nasal reconstruction; Nergui’s stent

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /  Dr.  Sung-­‐won  Kim,  Department  of  Otorhinolaryngology,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)    *  Supported  by  Korea  Health  Industry  Development  Institute  and  World  Vision

The  assembly-­‐type  moldCustomized  silicon  stent

Printing  the  mold

Assembly-­‐type  mold  design

3D  Printing  of  customized  stent  for  Nergui

25

Advanced Biomedical Device with 3D Printing Technology Nasal reconstruction; Nergui’s stent

*  Co-­‐work  group  :  Dr.  Jong  Won-­‐Rhie,  Department  of  Plastic  and  Reconstructive  Surgery,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)  /  Dr.  Sung-­‐won  Kim,  Department  of  Otorhinolaryngology,  The  Catholic  University  of  Korea  (Seoul  St.  Mary's  Hospital)    *  Supported  by  Korea  Health  Industry  Development  Institute  and  World  Vision

Domestic media (동아일보)

Korean  public  TV  (MBC 뉴스데스크)

International media (3ders)Media  coverage

▪  Installation  of  individually  controllable  6  heads  ▪  Working  space  :  270  X  150  X  130  mm  ▪  Dispensing  capability  of  six  different  materials  including  cells,  proteins,  and  biomaterials  

Motion specification of multi head cell printing system

X-Axis Y-Axis Z-Axis

Number of Axis 1 1 6

Motor Linear motor Linear motor AC servo motor

Encoder Linear encoder Linear encoder Rotaryencoder

Working Space 300 X 160 X 130 mm

Range 440 mm 510 mm 130 mm

Resolution 1.9 nm 1.9 nm 15 nm

Accuracy ± 1.6 µm ± 2.4 µm ± 5 µm

Repeatability ± 0.8 µm ± 1 µm ± 5 µm

Max. Velocity 0.5 m/sec 0.5 m/sec 0.1 m/sec

Max. Acceleration 0.5 G 0.5 G 0.5 G

Pitch & Yaw ± 20 arc sec ± 20 arc sec ± 20 arc sec

Design  and  Construction  of  MtoBS

*  Paper:  Jin-­‐Hyung  Shim  and  Jung-­‐Seob  Lee  et  al.,  J.  Micromech.  Microeng.,  Vol.22,  No.8,  pp.085014  ,  Aug.  2012.

Multi-head Tissue/Organ Building System (MtoBS)

26

3D Cell printing

What  is  Bioink?• A  cell-­‐laden  hydrogel  which  meets  requirements  from  cell  printing• One  of  the  most  challenging  part  in  the  cell  printing  system

• Biological  viewpoint          -­‐  Biocompatibility• Rheological  viewpoint    -­‐  Sufficient  viscosity  (below  100  Pa•s)• Physical  viewpoint                -­‐    Proper  yield  stress

Key  hydrogel  properties  in  cell  printing

• A  single  component  of  the  ECM  (e.g,  gelatin,  collagen,  fibrinogen)• An  exogenous  polymer  (e.g.,  alginate,  chitosan)

(A) (B) (C) (D)

Hyaluronic  acid/dextran

Alginate/gelatin Alg*/Gel**/Chitosan/Hepatocytes  (white)  Alg/Gel/Fibrinogen/ASCs  (red)

Gradient  Gelatin  (neuron/schwann  cells)    

Current  limitations

Difficulty  of  realization  of  the  chemical,  biological  and  mechanical  complexity  of  the  native  environment  

3D Cell Printing Technology: Development of Bioink Decellularized ECM bioink

27

*  Paper:  Falguni  Pati  and  Jinah  Jang  et  al.,  Nature  Communications,  Vol.5,  No.3935,  Jun.  2014

28

Development  of  dECM  bioink  for  the  regeneration  of  various  tissues  and  organs

Nervous  system

Bone Cartilage

Integumentary  system

Adipose

Trachea    epithelium

Respiratory    system

Cardiovascular  system

HeartSkeletal  system

LiverDigestive  system

Cornea

Brain

Reproductive  system

Amnion  membrane

3D Cell Printing Technology: Development of Bioink Decellularized ECM bioink

Decellularized  Extracellular  MatrixAdipose  tissueCartilage  tissue Heart  tissue

Optical Histological

*

*

50µm

50µm

100µm

100µm

29

3D Cell Printing Technology: Development of Bioink Decellularized ECM bioink

*  Paper:  Falguni  Pati  and  Jinah  Jang  et  al.,  Nature  Communications,  Vol.5,  No.3935,  Jun.  2014

37˚C

4˚C

Various  properties  of  dECM  bioinks  (3%)

adECM solution

adECM gel

hdECM solution

hdECM gel

cdECM gel

cdECM solution

Sol-­‐gel  transition  of  dECMs  

Viscosity  at  15◦C Gelation  kinetics Mechanical  properties

30

3D Cell Printing Technology: Development of Bioink Decellularized ECM bioink

*  Paper:  Falguni  Pati  and  Jinah  Jang  et  al.,  Nature  Communications,  Vol.5,  No.3935,  Jun.  2014

Printed  structures  with  various  dECM  bioinks

2mm

hdECM gel structure

Hybrid of cdECM and PCL framework

Hybrid of adECM and PCL framework

PCL framework (moderate, wide)

cdECM Gel

PCL framework (fine)

adECM GelhdECM Gel

5mm 5mm

1mm 500µm500µm

hdECM-­‐gel  structure cdECM-­‐hybrid  structure adECM-­‐hybrid  structure

31

3D Cell Printing Technology: Development of Bioink Decellularized ECM bioink

*  Paper:  Falguni  Pati  and  Jinah  Jang  et  al.,  Nature  Communications,  Vol.5,  No.3935,  Jun.  2014

‹#›*Co-­‐work  group  :  Prof.  Joon  Ho  Wang,  Samsung  medical  center,  Seoul,  Department  of  Orthopaedic  surgery

Printing  process  for  osteochondral  tissue  regeneration  using  MtoBS

3D Cell Printing Technology

Osteochondral tissue regeneration

Cartilage and bone defect

5 mm

5 mm

✓ Anatomical  model

✓ Cell  printed  3D  structure

‹#›

Defect

In vivo

Implantation

Gross  observation

Group 2 Group 3 Group 4Group 1

scaffold cartilage

<Masson’s  trichrome>

*Co-­‐work  group  :  Prof.  Joon  Ho  Wang,  Samsung  medical  center,  Seoul,  Department  of  Orthopaedic  surgery

Cell printed structure

Design  of  osteochondral  tissue  printing

Histological  analysis  at  week  8

Group  1

Bone region

Cartilage region

Group  2

Group  3 Group  4

3D Cell Printing Technology

Osteochondral tissue regeneration

34

Coagulative  necrosis  –  Myocardial  Infarction  (MI) *Percutaneous  coronary  intervention  **Coronary  Artery  Bypass  Graft  

Myocardial  Infarction  (MI)

5-­‐yr  mortality  of  ≈50%

PCI* CABG**

Ischemic  cardiomyopathy

Reperfusio

n  

therapies

Three  major  strategies  for  the  treatment  of  MI

▪ Cell  therapy    

▪ Injectable  hydrogel    

▪ Patch  type  structure

   P.  Zammaretti,  et  al.  (Univ.  of  Pisa),  Current  Opinion  in  Biotechnology  (2004)

*Co-­‐work  with  Prof.  Hun  Jun  Park  -­‐  Div.  of  Cardiovascular  Medicine  of  Catholic  Medical  Center,  Korea                                                                Prof.  Sang  Mo  Kwon-­‐  Dept.  of  Physiology,  Pusan  National  University  School  of  Medicine,  Korea

3D Cell Printing Technology: Application of dECM Bioink Myocardial Infarction

35

Printing  cardiac  tissues  with  hdECM  bioinkConstruction  of  pre-­‐vascularized  cardiac  tissue  construct  

Live  Dead

Viability  of  cardiac  progenitor  cells  (CPCs) Maturation  of  CPCs  in  the  hdECM  gel2%  hdECM2%  collagen

cTnI/D

API

α-­‐SA

/DAP

I 2%  hdECM2%  collagen

*Co-­‐work  with  Prof.  Hun  Jun  Park  -­‐  Div.  of  Cardiovascular  Medicine  of  Catholic  Medical  Center,  Korea                                                                Prof.  Sang  Mo  Kwon-­‐  Dept.  of  Physiology,  Pusan  National  University  School  of  Medicine,  Korea

72

Infarcted area

Implanted  patch

Beating  heart  with  the  patch

Cardiac  wall  thinning(Negative  LV  remodeling)

No  treatmentMaintained

wall  thickness

CPC/EC  printed  

Blue:  Collagen  (Scar)Red:  Muscle  fibers

CPC  printed  Maintained

wall  thickness

Parameter CPC CPC/EC

LVEF  (%)* 49.43 53.2

FS  (%)** 20.33 22.36

*LVEF:  Left  Ventricular  Ejection  Fraction  LVEF  value  in  normal  case:  55~85%  

**FS:  Fractional  Shortening  FS  value  in  normal  case:  28~35%

*Co-­‐work  with  Prof.  Hun  Jun  Park  -­‐  Div.  of  Cardiovascular  Medicine  of  Catholic  Medical  Center,  Korea                                                                Prof.  Sang  Mo  Kwon-­‐  Dept.  of  Physiology,  Pusan  National  University  School  of  Medicine,  Korea

38

Fabrication  of  ear  structure

<  MtoBS  >  (Multi-­‐head  tissue/organ  Building  System) <  Ear  structure  >

*  Co-­‐work  group:  Prof.  Jeong-­‐Hoon  Oh,  St.  Paul’s  Hospital,  Catholic  university  of  Korea  *  Paper:  J-­‐S  Lee  et  al.,  Biofabrication,    Vol.6,  No.2,  pp.024103,  Jan.  2014

<  CAD/CAM  code  generation  >

Fabrication  of  acellular  hybrid  structure  with  ear  shape

3D Cell Printing Technology

Ear regeneration

<  MBC  broadcast  >

<  Auricular  scaffold  >

Auricular  cartilage  region

Earlobe    fat  region

*  Co-­‐work  group:  Prof.  Jeong-­‐Hoon  Oh,  St.  Paul’s  Hospital,  Catholic  university  of  Korea  *  Paper:  J-­‐S  Lee  et  al.,  Biofabrication,    Vol.6,  No.2,  pp.024103,  Jan.  2014

 3D  Cell  printed  structure  with  ear  shape

<  3D  printed  ear  >

Auricular cartilage region

Earlobe fat region

➢  Main  material  :  PCL  (poly-­‐caprolactone)  ➢  Hydrogel  :  alginate  (4  w/v  %)  ➢  Cell  :  MC3T3  (pre-­‐osteoblast),                              2.5  X  106  cells/ml  ➢  Green  :  cartilage  region  (by  DiO)  ➢  Red  :  fat  region  (by  DiI)

Auricular cartilage region

Earlobe fat region

➢  Material  :  PCL  (poly-­‐caprolactone),  Line  width  (200㎛),  Pore  size  (800㎛)  ➢  Whole  size  :  25  X  16  X  7.5  mm

Fat  region

Cartilage  region

3D Cell Printing Technology

Ear regeneration

Implant  reconstruction   :  Silicon  /   Infection,   foreign  body  reactions,      capsular  contraction  Autologous   fat   :   More   natural   /   insuff ic ient  revascularization,    longer  surgery  TRAM*   flap   :   Feels   most   like   a   natural   breast   /   Longer  scar,  hernia          *Transverse  Rectus  Abdominis  Myocutaneous  flap

• Breast  cancer  is  the  most  common  cancer  in  women,  with  an  estimated  1.3  million  new  cases  diagnosed  each  year  worldwide  

• Patients  with  breast  cancer  need  to  undergo  either  Lumpectomy  or  Mastectomy

Why  we  need  breast  regeneration

Lumpectomy  &  Mastectomy

Current  Breast  reconstruction  strategies

(left)  Lumpectomy,  (Right)  Mastectomy

(left)  Implant  reconstruction,  (Center)  TRAM  flap  (Right)  Autologous  fat

*  Co-­‐work  group:  Prof.  Jong  Won  Lee,  Department  of  Plastic  and  Reconstructive  Surgery,  St.  Mary’s  Hospital

3D Cell Printing Technology: Application of dECM bioink Breast regeneration

40

Breast  regeneration  with  cell  printing  technology

In  vivo  assessment  of  adipose  tissue  formation3D Cell Printing Technology: Application of dECM bioink

Breast regeneration

*  Co-­‐work  group:  Prof.  Jong  Won  Lee,  Department  of  Plastic  and  Reconstructive  Surgery,  St.  Mary’s  Hospital

41

Dimensions  of  the  structure Volume  retention

Regeneration  of  the  adipose  tissue    (H&E  staining,  4  weeks)  

A B

C D

 (Immunohistological  staining,  4  weeks)  

A

B

C

D

E

F

G

H A:  PCL  scaffold  B:  Hybrid  scaffold  C:  Cell  printed  structure  D:  Injectable  gel

Green  :  Collagen-­‐IV  Blue  :  DAPI

10mm

6mm

Printed  constructCAD  model

Thank You for Attention !!

For more information: http://ims.postech.ac.kr

Recommended