Funciones variables

Preview:

DESCRIPTION

Funciones Variables que ayudan a los estudiantes a entender las matemáticas que son muy muy dificiles.

Citation preview

UNIVERSIDAD CENTRAL DEL ECUADOR

FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA DE ECONOMÍA

Funci0nes de variable real

Funciones de Variable Real

Definición: Es una aplicación de un subconjunto:

El DOMINIO de una función es el conjunto de los números reales donde esta definida la función:

La IMAGEN de una función es el conjunto de números reales que se obtiene al aplicar f a su dominio:

Definimos:

Definición: sea f: A→B una función biyectiva, entonces existe una única función que llamaremos función inversa de

que verifica:

¿Que es biyectiva? Si una aplicación es inyectiva y

sobreyectiva simultáneamente, se denomina biyectiva ej.:

Es inyectiva cuando los elementos que tienen origen tienen un único origen.Es sobreyectiva todos los elementos del conjunto final tienen origen. Ej:

Monotonía de la función de variable realLa función es monótona creciente si:

La función es monótona decreciente si:

ParidadSea una función real de variable real,

diremos que:

• f es par si f(x)=f(-1)• f es impar si f(x)=-f(-x)

Una función de variable real esta acotada esta acotada superiormente e inferiormente si:

Una función es periódica si:

Cero de una función

Donde una función toma el valor de cero (0)En este ejemplo -2 y 2 son los ceros de la función

Ej.:

FUNCIÓN DEFINIDAS POR TRAMOS

REGLA DE CORRESPONDENCIA

Es aquella ecuación que nos permite relacionar los elementos del dominio con los elementos del

rango. Ejemplo: y = x B } y A 3 + 1 f = { (x ; y) / x

Composición de funciones

FUNCIONES ESPECIALES: Dom f = R Ran f = {c }

VALOR ABSOLUTO en matemáticas, el valor absoluto o módulo[1] de un número real es su

valor numérico sin su respectivo signo, sea este positivo (+) o negativo (-). Así, por ejemplo, 3 es el valor absoluto de 3 y -3.

El concepto de valor absoluto de un número real puede generalizarse a muchos otros objetos matemáticos, como son los números reales, cuaterniones, anillos ordenados, cuerpos o espacios vectoriales.

El valor absoluto está estrechamente relacionado con las nociones de magnitud, dist

ancia y norma en diferentes contextos matemáticos y físicosLas funciones en valor absoluto se transforman en funciones a trozos,

siguiendo los siguientes pasos: 1. Se iguala a cero la función, sin el valor absoluto, y se calculan sus raíces. 2. Se forman intervalos con las raíces y se evalúa el signo de cada

intervalo. 3. Definimos la función a trozos, teniendo en cuenta que en los intervalos

donde la x es negativa se cambia el signo de la función. 4 Representamos la función resultante.

SUMA FUNCIONES POLINOMIALES

Sumar varios polinomios es formar un nuevo polinomio cuyos términos sean todos y cada uno

de los términos de los polinomios dados.

EJEMPLO:X³ - 5X² + 2X – 6

2X³+ 3X² - 4X + 3X² - 2X + 1

3X³ - X² - 4 X – 2 Cuando los polinomios dados contienen términos semejantes es mejor

exponerlos uno debajo de otro de modo que los términos semejantes queden en columna.

RESTA FUNCIONES POLINOMIALES

Para restar un polinomio de otro se cambia el signo del polinomio que ha de ser restado y el resultado

se suma algebraicamente al otro polinomio.

EJEMPLO:

X⁴ X³ X² X¹ X⁰X⁴ + X² + 2 – X³ + 5X – 6

X⁴ – X³ + X² + 5X – 4

Restar X³- 5X + 6 de X⁴ + X² + 2(X⁴ + X² + 2) – (X³- 5X + 6)

 

MULTIPLICACIÓN FUNCIONES

POLINOMIALES Para multiplicar dos polinomios se aplica también la ley

distributiva. Resulta así un nuevo polinomio, cuyos términos son los productos de cada termino del primer polinomio por cada

termino del segundo polinomio.

EJEMPLO:

X³ X² X¹ X⁰ x³ -5x + 2

+ 2X – 32X³ - 10X² + 4X m

3x² + 15x -62X³ - 13X² + 19X -6

Multiplicar X² - 5X + 2 por 2X – 3

 

DIVISIÓN FUNCIONES POLINOMIALES

Dividir un polinomio A(x) por otro polinomio B(x), cuyo grado sea igual o menor que el de A(x), es hallar otros dos

polinomios C(x) y R(x) se cumplan las siguientes condiciones:

1.- A(x) = B(x)*C(x)+R(x)2.- El grado de R(x) < que el grado de B(x)

Donde:• A(X) dividendo • B(x) Divisor• C(x) Cociente Entero• R(x) Resto

EJEMPLO:

X³ X² X¹ X⁰

6x³ - 11x² +12x - 17 -6x³ + 2X² - 8X .

- 9X² + 4X - 179x² - 3x + 12

X - 5

Dividir 6X³ - 11x² +12 x - 17 por – 3x² - X + 4

3x² - x + 42x - 3

Resto

Dividendo Coeficient

e

Divisor

TEOREMA DEL FACTOR

El polinomio P(x) es divisible por un polinomio de la forma (x-a) si y solo si P(x=a)=0.

Al valor x=a se le llama raíz o cero de P(x).Las raíces o ceros de un polinomio son los valores que anulan el polinomio.

EJEMPLO:X⁴–2X³+X²+X–1 tiene por factor (x-1) X⁴–2X³+X²+X–1 es divisible (x-1) sí y sólo si P(x=1) = 0P(X)= 1⁴–2.1³+1²+1–11= 1-2+1+1-1=0(X-1)ES UN FACTOR

 

TEOREMA DEL RESIDUO

Teorema que establece que si un polinomio de X, f(x),se divide entre (x-a),donde a cualquier numero

real o complejo , entonces el residuo es f(a)

EJEMPLO:

Si f(x)= X² +x- 2 se divide entre (x-2),el residuo es Si f(2)= 2² +2 = 4 este resultado puede volverse obvio si cambiamos el polinomio de una de las siguientes formas equivalentes :Si f(x)= ( x- 2 )(x+3)+4Como se muestra, la expresión anterior nos puede llevar fácilmente a esperar que 4 sea el residuo cuando f(X) se divide entre (X-2)

 

FUNCIÓN EXPONECIAL

RESOLVER INECUACIONES EXPONENCIALES Resolver la inecuación :

Para tal propósito tratemos de expresar al número 8 como potencia de base 2.

Luego o lo que es lo mismo, . Recuerda que las exponenciales de base a>1 son crecientes de

modo que en este caso las exponenciales tienen base 2>1 y por tanto, la desigualdad dada se cumplirá para: 3-2x>-3 de donde -2x>-6 es decir 2x<6 o lo que es lo mismo x<3

RESOLVER INECUACIONES LOGARITMICAS Resolver la siguiente inecuación :

log (3-x)>1

Observe que 3-x>0 para tener definido el miembro izquierdo.

Es decir: x<3 Ahora log (3-x)>1 log (3-x)>log1010 y recordaremos que el logaritmo es una

función creciente para la base a>1 Luego para que esa desigualdad se cumpla

basta con que 3-x>10, es decir, -x>7 o sea x<-7y la parte común entre las x que cumplen esa condición (x<-7) y los de los valores admisibles (x<3) es el conjunto de la x reales tales que x<-7

S =

REGLA DE CORRESPONDENCIA DE LA INVERSA DE UNA FUNCIÓN DE VARIABLE REAL

Es aquella ecuación que nos permite relacionar los elementos del dominio con los elementos del rango.

Ejemplo: y = x 3 + 1 f = { (x ; y) / x A y B }

Ejemplo:   f (5) = 5 2 f (4) = 4 2 f (2) = 2 2 Entonces: f (x) = x 2 ; x {2 ; 4 ; 5}

INTERPRETAR LA RELACIÓN ENTRE LA GRAFICA DE UNA FUNCIÓN Y SU INVERSA La relación entre la gráfica de una

función y la gráfica de su inversa simple: sólo hay que reflejar la gráfica de la función respecto a la recta y=x

Ejemplo de función inversa:

Despejamos de la siguiente manera:

Se intercambian ambas variables:

Intercambiamos Y tenemos que la función inversa es: Tabulamos ambas funciones para dibujar la

grafica.

-6 -4

-5 -3

-4 -2

-3 -1

-2 0

-1 1 0 2

   

1 -1

2 0

3 1

4 2

5 3

6 4

7 5

Recommended