12
1 三三三三三 (1.2 mm) 三三三三三三三三 三三三三三三 chanical performance of three thickness resistanc spot welded low carbon steel 三三三三 : 三三三 三三 三三三 : 三三三 三三 : 2012 三 10 三 12 三

三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

  • Upload
    maire

  • View
    46

  • Download
    3

Embed Size (px)

DESCRIPTION

三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance spot welded low carbon steel. 指導老師 : 郭聰源 教授 報告者 : 李建賢 日期 : 2012 年 10 月 12 日. 一、前言. 電阻點銲在金屬銲接中佔重要地位,每部車大約有 2000 至 5000 個銲點,但約有 20-30 % 銲點不確定是否完整。 一般車身銲接大都為兩片板材進行接合,但由於結構限制,三或四片板材點銲是不可避免的。 - PowerPoint PPT Presentation

Citation preview

Page 1: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

1

三片同厚度 (1.2 mm)之低碳鋼電阻點銲機械性質研究

Mechanical performance of three thickness resistancespot welded low carbon steel

指導老師 : 郭聰源 教授報告者 : 李建賢日期 : 2012年 10月 12日

Page 2: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

2

一、前言 電阻點銲在金屬銲接中佔重要地位,每部車大約有 2000 至

5000 個銲點,但約有 20-30 % 銲點不確定是否完整。

一般車身銲接大都為兩片板材進行接合,但由於結構限制,三或四片板材點銲是不可避免的。

在點銲三至四片時,可能會產生點銲品質不佳,且易在錯誤或不重疊的位置產生銲點。

本研究針對三種相同厚度之低碳鋼在電阻點銲時造成銲核之生長機制與機械性質的變化,並探討銲核之微觀結構與破壞模式行為。

Page 3: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

3

二、實驗步驟與方法使用設備 : 交流式電阻點銲

機材料 : 低碳鋼電極直徑 : 8 mm

電極壓力 : 3.5 bar

電流 : 11 kA

時間 : 0.18 、 0.22 、 0.32 s

本研究分別用三種同厚度(1.2 mm) 的低碳鋼做電阻點銲,分析銲核成長和機械性質,並針對銲核結構和破壞模式做觀察。

圖 1. 樣品尺寸示意圖

Fe C Mn P S Si Cr Ni Cu

Bal. 0.081 0.21 0.049 0.0073 0.013 0.008 0.032 0.0368

表 1. 成份元素表 (wt-%)

Page 4: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

4

三、結果與討論

3-1 銲核成長情況

3-2 銲核金相組織和硬度曲線

3-3 機械性質和破壞行為

Page 5: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

5

三、結果與討論 (1/6)- 銲核成長情況

圖 2.三種厚度的巨觀示意圖(FZSGC 為界面銲核尺寸 FZSS/S 為中心銲核尺寸 )

銲核成長示意圖如圖 2 所示, FZSG/C 為界面銲核尺寸 , FZSS/S 為中心銲核尺寸。

由圖 3 可觀察出,銲接時間↑ 兩種銲核的尺寸皆↑。

圖 3. 銲核尺寸與銲接時間關係圖

Page 6: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

6圖 4. 點銲巨觀圖

銲接時間 (a)0.18 s (b)0.22 s (c)0.32 s

銲接時間 0.18 s 時,融合區只形成在中心,板材間並沒有融合。因此,須提高時間來增加 FZSs/s 的大小。

銲接三片板材的銲核可能無法完全成形。

增加板材厚度,可讓銲點位置從中心移到片 / 片接口。

根據 Harlin 的文獻指出 :

1. 熱源產生的位置沒有差別,銲接時間 的影響比較顯著。

2. 三片鋼材厚度愈高孕核期的時間愈長。

3. 在三個相同厚度板材下,兩個銲核會

同時出現在板材 / 板材之間。

三、結果與討論 (2/6)- 銲核成長情況

Page 7: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

7

三、結果與討論 (3/6)- 金相組織和硬度曲線母材的組織為肥粒鐵及少量的碳化物位於晶界中。

從微觀結構可觀察到熱影響區 (HAZ) 並沒有相變化。

從 FZ區金相可觀察到柱狀結構,此結構主要由條狀麻田散鐵、少量的共析肥粒鐵與魏德曼肥粒鐵所組成。

麻田散鐵的形成是電阻點銲中電極冷卻水快速冷卻所形成。

因麻田散鐵形成的關係, FZ區硬度高於 HAZ區。

圖 5.在三種厚度電阻點銲微觀結構圖 圖 6.三種厚度電阻點銲垂直硬度圖

Page 8: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

8

三、結果與討論 (4/6)- 機械性質和破壞行為

銲接時間↑銲核尺寸↑。

銲核尺寸↑最大負荷能吸收的能量也愈大。

圖 7. 焊接時間與最大負荷關係圖

Page 9: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

9圖 8. 銲接時間與失效能量關係圖 圖 9. a-界面破壞 b-拉出破壞示意圖

由圖 8 顯示,在銲接時間為 0.16-0.18 s 時為不良之界面破壞 (IF) ,當銲接時間高於 0.2 s 時,可形成較佳之拉出破壞 (PF) 。

銲接時間↑銲核熱量↑銲核較為完整拉出破壞 (Pullout failure)。

三、結果與討論 (5/6)- 機械性質和破壞行為

Page 10: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

10圖 10.(a) 片材拉伸示意圖 (b)右邊 T 部開始有縮頸現象 (c) 拉伸最後斷裂在基材

由圖 10 的 b 和 c 圖可觀察到,頸縮和斷裂的位置皆在基材基材硬度比經熱相變化的 FZ 區低

銲核形成的位置導致破壞模式的改變。

界面破壞是否發生取決於 FZSs/s 的尺寸大小。

界面銲核尺寸 (FZSGC)明顯小於中心銲核尺寸 (FZSS/S) 界面破壞。

三、結果與討論 (6/6)- 機械性質和破壞行為

Page 11: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

11

四、結 論1.中間片材在電阻點銲的銲核成形中有著重要的關係。

2.銲核的高硬度來自於低碳鋼的麻田散鐵相變化。

3.銲接時間愈長,銲核尺寸愈大,銲核能吸收的負荷能量愈高。

4.銲接時間↑確保銲核生長在板材間的接口。

5. Pullout failure試驗中斷裂在母材。

Page 12: 三片同厚度 (1.2 mm) 之低碳鋼電阻點銲 機械性質研究 Mechanical performance of three thickness resistance

12

謝謝聆聽