63
Σημειώσεις Θεωρίας Αριθμών Θ. Θεοχάρη-Αποστολίδη

Θεωρία Αριθμών

Embed Size (px)

Citation preview

. -2 "tex" 1 Carl Friendrich Gauss (1777-1855) Disquistiones Arithmeticae, 24 - . , , Pierre de Fermat(1601-1665) - . , modm, m, m ( ) mod m. m ( ), , modm mod m. . 1 a, b, c, d .:1. a b mod m b a mod m a b 0 mod m.2. a b mod m b c mod m a c mod m.3. a b mod m c d mod m (a+ c) (b + d) mod m.4. a b mod m c d mod m ac bd mod m.5. a b mod m d m, d > 0 a b mod d.6. a b mod m, ac bc mod m, c > 0. 2 f (x) Z[x]. a b mod m, :f (a) f (b) mod m.34 1. 3 , x, y Z m1, m2, . . . , mr, m N.1. x y mod m x y modm(,m).2. x y mod m (, m) = 1, x y mod m.3. x y mod mi, i = 1, 2, . . . , r x y mod [m1, m2, . . . , mr] , (x, y) = ...x, y [x1, . . . , xr] = ... x1, . . . , xr. 2 Fermat, Euler Zn= 0, 1, . . . , n 1 modm. Zn :+ : + = +, : = (Zn, +, ) . , (Zn, +) (Zn, +) = (), (, n) = 1. , (Zp, +, ) p. Zn= Zn : (, n) = 1. (Zn, ) () . , Zn , Z : + n=1 = 1 (, n) = 1, 1= . 1 1. Z5= 0, 1, 2, 3, 4 Z5= 1, 2, 3, 4. 2 : 2, 22= 4, 23= 3, 24= 1 , Z5=_2_. ,Z5=_3_, 33= 2 , _4_ = 4, 1 Z5.2. Z8= 1, 3, 5, 7 , 32= 1, 52= 1, 72= 1, 4. 4(Fermat)p Z,p. p1 1 mod p., Z/0 pmod p. 56 2. FERMAT, EULER, , . (Zp, ), Zp = p1. Zp, p1= 1. , p p1 1 mod p. p1 1 mod p p mod p. p . Z/0, pmod p, p .

5(Euler) n> 1 Z (, n)= 1. (n) 1 mod n, Euler, (n) =Zn.. (n)=Zn, Zn, (n)= 1, Z, (, n) = 1, (n) 1 mod n. 6( Wilson)(i) p (p 1)! (1) mod p(ii) n > 1 , (n 1)! (1) mod n, n ..(i) (Zp, +, ) p1 . Zp, 2 x2=1 Zp, x2 1=0Zp. 1 1=p 1. , Zp 1 p 1 , aa1. , 12 p 1=p 1, (p 1)! (p 1) mod p (p 1)! (1) mod p.(ii) n > 1 , (n 1)! (1) mod n. n , n=n1n2 1 1 .:(i) ZnmZn Zm, (ii) ZnmZn Zm.910 3. EULER.(i) f : ZnmZm Zm, a mod nm (a modn, b mod m). f -. f 0 mod nm. ,f (a mod nm) =(0 mod n, 0 mod m) a 0 mod n b 0 mod m. (n, m)= 1, a 0 mod nm. , f . (b mod n, c mod m) Zn Zm. , a, a b mod n , a c mod m a modnm. f (a mod nm) = (b mod n, c mod m). f .(ii) f , Znm f Zn Zm. Znm =Zn Zm. 9(i) n > 1, m > 1 . (nm) = (n)(m).(ii) n > 1 n=

si=1piei , pi, 1 i s , n. (n) =

si=1_piei piei1_ = n

si=1_1 1pi_..(i) 8(ii) n>1, m>1 , , (nm) = (n)(m).(ii) (i) (pe) = pe pe1. 10 n > 1 . n=_dn (d), Euler..n>1, 1n, 2n, 3n, . . . ,n1n,nn, n. ad (a, d) = 1. n d (d), Euler. n=_(d).111. m N m1 m m1 > 1. a mod m1 nm1 : a, (a+ m1) mod m, . . . ,[a +_mm1 1_m1] mod m. (a+ km1) mod m, 0 kmm1 1 a mod m1. ., a+ m1 (a+ m1) mod m 0 , mm1 1 ( )m1 0 mod m modmm1., Z=_m11a=0a mod m1 Z=_m1=0 mod m a mod m1 . a mod m1 (a= km1) mod m, 0 k mm1 1. , x a mod m1 x= a + m1 , Z x= a +_mm1+ _m1,=_mm1+ _, 0 mm1 1, x =a+ m+ m1, 0 mm1 1, x (a + m1) mod m, 0 mm1 1. 1 2 + 9Z = (2 + 18Z) _(11 + 18Z), m= 18, m1= 9.2. n, m N/0 (n, m) = 1. , , a1, . . . , an1 (- {1, . . . , m1) modn (- modm) . aim +jn, 1 i n 1, 1 j m 1 modnm. aim+ jn, 1 i n 1, 1 j m 1 nm, modnm. aim+jn (am+n) mod nm nm [(ai a)m+ (j )n] j mod m ai a mod n. 1 : m N/0 0 a m1 - modm, sa+ , 0 a m 1, (s, m)= 1 Z, modm.12 3. EULER 2 - .3. n1, n2, . . . , ns . Zn1 Zn2 Zns Zn1n2ns .: : s 8. : Z Zn1 Zn2 Zns,a (a mod n1, a mod n2, . . . , a mod ns)4. (n+ 1)2x 1 mod (2n + 1)3, n Z._(n + 1)2, (2n + 1)3_ = 1. , p p (n + 1)2 p (n +1). , p (2n +1)3 p (2n +1) = 2(n +1) 1 p 1,. . :(2n + 1)3= (n + 1)2(8n 4) + 6n + 536(n + 1)2= (6n + 5)(6n + 7) + 1 1 = 36(n + 1)2 (6n + 5)(6n + 7) = 36(n + 1)2 [(2n + 1)3 (n + 1)2(8n 4)] = (n + 1)2[8(6n2 4n + 1)] (2n + 1)3(6n + 7). 8(6n2 4n + 1) mod (2n + 1)3 .5. aix i mod mi, 1 i s, m1, m2, . . . , ms , (a1, m1) = 1, i, ai Z. , aix i mod mi, 1 i s, , x ci mod mi, 1 i s. , , modm1m2 ms.6. aix i mod mi, 1 i s, m1, m2, . . . , ms ai, i Z.aixi mod mi, 1 i s di:=(ai, mi) i, 1 is . di, 1 i s , : ci, ci+midi, ci+ 2midi, . . . , ci+ (di 1)midimodmi, ci aidix

idimodmidi, 1 i s. d1, . . . , ds, 13 modm1 ms, .7. 3749 7. Fermat, 3771 1 mod 7, 376 1 mod 7. 49= 68+ 1, 3749=(376)8 37 37 mod 7=(57+2) mod 7 = 2 mod 7.8. 347 23. Fermat 322 1 mod 23.47 = 222 + 3, 347 33mod 23 = 4 mod 23.9. 2217+ 1 19. Fermat 218 1 mod 19. 217mod 18. (2, 9) = 1, 26 1 mod 9 272 mod 18 217=227+3=(27)2 2322 23mod 18 =25mod 18 = 32 mod 18 = 14 mod 18. 217 14 mod 18 217= 14+k18, k Z , 2217= 214+k18 214mod 19. 218= 1 mod 19 214 24 1 mod 19, 214 24 Z19., 19 = 16+3, 16 = 3 5+1 11 = 163 5 = 165(1916) == 519 +616, 6 mod 19 16 mod 19. 2217 214mod 19 6 mod 19 2217+ 1 7 mod 19.10. p , p 3. (p 2)! mod p. Wilson, (p 1)! (1) mod p. , (p 1) (1) mod p. , (p 2)!(p 1) 1 mod p (p 2)! 1 mod p.11. 34! mod 37Wilson, 36! (1) mod 37. , 10, 35! 1 mod 37. , 34!35 1 mod 37 34! (35)1mod 37. , 37 = 35+2, 35 = 217+1 1 = 1737+1835, 1835 1 mod 37, 34! 18 mod 37.14 3. EULER12. 49! mod 53.(53 2)! 1 mod 53 51! 1 mod 53 49!5051 1 mod 53.5051 =2550Z53. 2550 =4853 + 6, 53= 86 + 5, 6= 5 + 1 1= 92550 43353. ,49! 9 mod 53.13. n Z, 383838 (n37 n).383838=237131937 383838 . 37 n 37 (n37 n). 37n n36 1 mod 37 37 (n36 1) 37 (n37 n). , 2, 3, 7, 13, 19 (n37 n), 383838 (n37 n). 2. . -. :1. 112. 12, .82:12.1, 12.2, 12.4, 12.53. 14, .91:14.1, 14.2, 14.4, 14.5, 14.6, 14.84. 15, .105:15.4, 15.5 4 (Zp, ) (Zp, ) -. , .G a G. a, ord(a) s0 :as=e, e G. (a) , G, a. - : 1 G= (a) n < .(i) ord(a) = (a),(ii) a= e n (iii) a= a mod n(iv) ord(at) =n(n,t)(v) G= (at) (n, t) = 1(vi) G (vii) m n Gm, H= (anm). 2 G ,a G p . ap= e ap1 e, ord(a) = p..m=ord(a), ap=e (ii) 1, 1516 4. (ZP, ) m p. m=pt, 0 t . t 2 . Legendre :(a/p) =___1, pa a modp0, p a1, pa a modp x2=a mod p (a, p)= 1 Zp, x2 a Zp[x] . , (a/p) =1, p a (a/p) = 1. , (a/p) + 1. Legendre 14 p a, Z.:(i) (a/p) ap12mod p(ii) (1/p) = (1)p12(iii) (a/p) = (a/p)(/p)(iv) a mod p (a/p) = (/p)(v) (a2/p) = 1 (1/p) = 1..(i) Euler ( 13).(ii) (1/p) 1. (1)p12 Euler.(iii) p ap , (a/p) =0 (/p) =0. p a p , Euler (a/p)(/p)= ap12

p12= (a)p12=(a/p) mod p p > 2 (a/p) 1, (a/p)(/p) = (a/p).(iv) Legendre.(v) (iii) . 4 x2 63 mod 11.63 8 mod 11, (63/11) = (8/11). (8/11) = (23/11) = (2/11) (22/11) =(2/11)1=(2/11). , 32 Z112, (2/11) = 1, .24 5. - LEGENDRE 4 1. . - . ,17:17.3 , 17.4 , 17.52. 3 modp p= 7, 13;3. (a/p) a= 1, 2, 2, 3 p= 11, 13, 17.4. ;(i) x2 2 mod 61(ii) x2 2 mod 59(iii) x2 2 mod 61(iv) x2 2 mod 59: , . 15( Gauss Gauss) p pa. a, 2a, 3a, . . . ,p12a modp. n p2, (a/p) = (1)n.. r1, r2, . . . , rn modp a, 2a, . . . ,p12a - p2 s1, s2, . . . , sk . r1, r2, . . . , rn, s1, s2, . . . , sk . , n+ k=p12. ,ri>p2 0 1 . N= 5(n!)21. N+1 = 5(n!)2, N 1 mod 5. p N, p1 mod 5.-, N 1 mod 5 N=

si=1paii, n=

si=1(1+5i)ai, ai, i, 1 i s., N 1 mod 5, N N 1 mod 5, . p N p1 mod 5. pp>n. p N N 0 mod p N+ 1 1 mod p _N+1p_=_1p_= 1 1=_N+1p_=_5(n!)2p_=_5p_ _(n!)2p_=_5p_.,_5p_ _p5_=(1)p12512=1. _5p_=_p5_, 1=_5p_, 1=_5p_=_p5_, p mod5. mod 5 1 4, Z52= 1, 4.p 4 mod 5, p1 mod 5. , , p < n.,p n!, p 5(n!)2. , p NN= 5(n!)2 1, p 1, . ,, n> 1, p>n, p 4 mod 5. 5m 1.299. _8745231_. 874 = (1)21923._8745231_ =_15231_ _25231_ _195231_ _235231_ == (1)523112(1)5231218(1)1912523112_523119_ (1)2312_523123_ == _523119_ _523123_.,_523119_ =_ 619_ _523123_ =_1023_._ 619_ =_2319_ =_ 219_ _ 319_ = (1)19218(1)3121912

_193_ =_193_ =_13_ _1023_ =_1023_ _1023_ == (1)23218(1)5122312

_235_ =_235_ =_35_ = (1)312512_53__53_ =_23_ = (1)3218. .10. -3 modp, p > 3 p= 6m+ 1, m N._3p_= 1 _1p_ _3p_= 1 (1)p12_3p_= 1 _3p_=(1)p12. , _3p_ _p3_=(1)p12312. _p3_=(1)p12(1)p12_p3_= 1. pp 1 mod 3p 2 mod 3. p 2 mod 3, _p3_=_23_= 23218= 1, , _p3_= 1.p 1 mod 3 3 (p 1). , 2 (p 1), p ., 6 (p 1) , p= 6m+ 1., p= 6m +1 m N, (3/p) =_1p_ _3p_ =(1)p12_p3_ (1)p12312=_p3_=_6m+13_=_13_=1, -3 modp p 6m+ 1.- 8. , , - . 18(Dirichlet)a,N, (a, ) = 1. , an+, n N.11. p > 2 3 ;_3p_ =_p3_ (1)p12,_p3_ =____13_ = 1, p 1 mod 3_23_ = 1, p 2 mod 3.30 6. ,(1)p12=___1, p 1 mod 41, p 3 mod 4._3p_ = 1 ___p 1 mod 3, p 1 mod 4p 2 mod 3, p 3 mod 4.,_3p_ = 1 p 1 mod 12 p 11 mod 12. 5ap> 2, pa. (a/p)= (1)m, m=_p12i=1_ia/p_ [x] x.. , ia =ip+ i, 0 i 1. , f (x) Zm[x]. f (x) = anxn+an1xn1+. . . +a1x +a0 Zm[x] n an 0 Zm. , f (x) 0 mod m n. a Z, f (a) 0 mod m. a f (x) mod m. 19(Lagrange) f (x) Z[x]n. f (x) 0 mod p, p , n ..Zp , f (x) Zp[x] n, n. , f (x) 0 mod p n . 7 1. xpx 0 mod p p , Fermat a Zp, ap a a mod p.2. x2 1 0 mod 8 1, 1, 3, 3Z8, . Lagrange .3. 8x3+2x2+1 0 mod 5 3, 8x3+3x2+x+ 1 0 mod 4 2.3334 7. 20 d m, d> 0 a f (x) 0 mod m, a f (x) 0 mod d..m f (a) d f (a) f (a) 0 mod d. 21f (x). -mN(m)-f (x) 0 mod m. m=m1m2, (m1, m2) = 1,N(m) =N(m1)N(m2)., m=

ti=1peii, N(m) =

ti=1N _peii_.. a Zm f (a) 0 mod m, . m= m1m2, (m1, m2)= 1, f (a)= 0 mod m1m2 mi f (a), i = 1, 2 f (a) 0 mod mi, i = 1, 2. a1 Zm1, a a1 mod m1 a2 Zm2, a a2 mod m2. , 2, f (a1) 0 mod m1 f (a2) 0 mod m2. , a f (x) 0 mod m, (a1, a2), ai f (ai) 0 mod mi, i = 1, 2. , a1, a2 f (x) 0 mod m f (x) 0 mod m1 f (x) 0 mod m2. , a mod m 1 mod m1 2 mod m2, a1 1 mod m1 a2

2 mod m2. (m1, m2) = 1. . . ai f (x) ai mod mi. , a Zma a1 mod m1 a a2 mod m2. f (a) 0 mod m1 f (a) 0 mod m2 f (a) 0 mod m1m2, (m1, m2)= 1, f (a) 0 mod m. N(m) = N(m1)N(m2). 2 f (x) 0 mod m, N(m) = 0. 8 1. f (x) = x2+x +7 0 mod 15. x2+x+7 0 mod 3 x2+ x+ 7 0 mod 5. 0,1,2 x2+ x+ 7 0 mod 3 , x 1 mod 3. ,35x2+ x+ 7 0 mod 5 , x= 0, 1, 2, 3, 4( 0,1, 2)., 2. x2+x +7 0 mod 21. x2+x +7 0 mod 3 , x 1 mod 3, .x2+x+7 0 mod 7 , x 0 mod 7 x 1 mod 7. 12= 2 . (1, 0), ___x 1 mod 3x 0 mod 7 (1, 1) (1, 6) ___x 1 mod 3x 6 mod 7., 1M1213+0M2217 , M1213 1 mod 3 M1= 1 M2217 1 mod 7 M2= 5. , 117 + 053=7 mod 21. 117+653 = 97 mod 21, 13 mod 21. 5 1. f (x) =x2+ x+ 7. f (x) 0 mod 189, 189= 33 7 f (x) 0 mod 27 4 13.2. x3+ 4x+ 8 0 mod 15. f (x) 0 mod pi, f (x) Z[x], p i 2. 22( Hensel) f (x) Z[x]. a mod pi f (x) 0 mod pi p f(a)0 mod p, f(x) f (x), t mod p f (a+ tpi) 0 mod pi+1, i 1. t tf(a) f (a)pimod p.36 7. . f (x)= k0 + k1x+ . . . + knxn Z[x]. f(x) f (x), f(x) =k1+ 2k2x+ . . . + nknxn1. - a mod pi f (x) 0 mod pi, f (a) 0 mod pi. t mod p (a+ tpi) mod pi+1 f (x) 0 mod pi+1. Taylorf (a+ tpi) = f (a) + tpif(a) +12!t2p2if(a) + . . . +1n!tnpnif(n)(a), n f (x). f (a+tpi) (f (a) + tpif(a)) modpi+1(1). , pi psis 1. 1s!f(s)(a) 2 s n. r f (x) krxr, f(s)(a) krr(r 1)(r 2)(r s +1)ars, 0 r n. s! r(r 1)(r s +1)( _rs_=r(r1)(rs+1)s!Z). , 0 r s, _rs_ s! (1). , , a+ tpi f (x) 0 mod pi+1, f (a +tpi) 0 mod pi+1, (1) :f (a)+ tpif(a) 0 mod pi+1f(a)t f (a)pimod p. f (a)pi, f (a) 0 mod pi . , , f(a) 0 mod p, t f (a)f(a)pimod p, f(a) f(a) mod p, f(a)f(a) 1 mod p. , , f(a)0 mod p, a +tpi f (x) 0 mod pi+1, t (1). , , (1) a+ tpi [a f (a)f(a)] mod pi+1(*). 5x2+ x+ 47 0 mod 73. f (x) =x2+x+ 47. Z7a1 mod 7 5 mod 7f (x) 0 mod 7. , f(x) =2x+ 1 f(1) =30 mod 7, f(5) =110 mod 7. -Hensel t a+ 7t f (x) 0 mod 72t + 7tf (x) 0 mod 72.a 1 mod 7, f(1) 3 mod 7f(1) 5 mod 7, 35= 15 1 mod 7., (*), 1+7t= 1f (1)f(1) 1+7t= 149375 (1245) mod 72 1+7t 244 mod 49 1+7t 1 mod 49.a2 1 mod 49 a2 f (x) 0 mod 72., 5 mod 7, f(5) 11 mod 7 f(5) 4 mod 7f(5) 2 mod 7, 42= 8 1 mod 7. , (*), 5 + 7t=5 f (5)f(5) 5 + 7t= 5 772 2 mod 49 5 + 7t 47 mod 49. 2 47 mod 49., a2 1 mod 72 2 47 mod 72a3 mod 73 3 mod 73 x2+ x+ 47 mod 73. a2 1 mod 72, f(1) = 3, f(1) 5 mod 7 a3= a2f (a2)f(1) a3= 1 495 mod 73 a3= 245 mod 343 a3 99 mod 343 a3 99 mod 73. 2 47 mod 72, f(47)= 95 4 mod 7 f(47) 2 mod 7

3= 2f (2)f(47) 3= 472303 2 mod 73 3= 4551 mod 343

3 243 mod 343 3 243 mod 73. , - : 99 mod 73, 243 mod 73. 3 Hensel (a + tpi)modpi+1, f (a) 0 mod pi f(a)0 mod p. f(a) 0 mod p, Taylor f (a +tpi) f (a) mod pi+1 t. , f (a) 0 mod pi+1 f (a+ tpi) 0 mod pi+10 t p, p , a+tpi, 0 t p., ,f (a)0 mod pi+1, a +tpi ., a mod pi f (x) 0 mod pi+1. 6f (x) =x2+ x+ 7 0 mod 81, x2+x +7 0 mod 34. x2+ x+ 7 0 mod 3 a 1 mod 3 f (1) =9.f(x)= 2x+ 1 f(1)= 3 0 mod 3. , f (x) 0 mod 32 1 mod 32, 1+3 = 4 mod 32 1 + 23 = 7 mod 32.a1 mod 32, f (1) =90 mod 33. f (x) 0 mod 33 a 1 mod 32. 4 mod 32, f (4) = 27 0 mod 33, 4 mod 32f (x) 0 mod 33. f(4) = 24 + 1= 9 0 mod 3, ,, f (x) 0 mod 33 4, 4 + 32= 13 4 + 232= 22., 4 mod 32 4 mod 33, 13 mod 3322 mod 33, f (x) 0 mod 33.38 7. 1 4 mod 33, f (4) = 270 mod 34. 2 13 mod 33, f (13) = 189 27 mod 34 f (13)0 mod 34. 3 22 mod 33, f (22) = 513 27 mod 34 f (22)0 mod 34. x2+ x+ 7 mod81.f (x) 0 mod p, f (x) p -. Lagrange n, n =deg f (x). x2+ x+ 7 0 mod 33 3 , , Langrange f (x) Zn, n . f (x) Z[x] f (x) mod p n p n p. - f (x) Z[x] xp x Z[x]. q(x), r(x) :f (x) = q(x)(xpx)+r(x), 0 deg r(x) p. x Z xp x mod p, Fermat, f (x) 0 mod p r(x) 0 mod p. , r(x) = 0 r(x) p, r(x) 0 mod p. , r(x) - p 1. r(x)=a0+ a1x+ . . . + asxsZ[x], s p 1 pas, r(x) 0 mod p asa0 + . . . + asas1xs1+ xs 0 mod p, as as Zp. , asas 1 mod p pas. , r(x) 0 mod p asr(x) 0 mod p. f (x) 0 mod p asr(x) 0 mod p. . 23 f (x) 0 mod p n n p. f (x) 0 mod p g(x) p1, g(x) 0 mod p . 6 1. x3 3 0 mod 52. 2x3 39 + 9 0 mod 73. 7x4+ 19x+ 25 0 mod 27394. 23 :(i) x11+ x8+ 5 0 mod 7(ii) x20+ x13+ x7+ x 2 mod 5(iii) x15 x10+ 4x 3 0 mod 7.40 7. 8 f : N/0 C . :(n) = n(n) = nk(n) = k nw(n) = n(n) = n ., (8) = 4, (12) = 6, (8) = 1+2+4+8 = 15, 2(8) = 1+22+42+82=85, w(8) = 1(8) = 3. :(n) =_dn 1, (n) =_dn d, k(n) =_dn dk, w(n) =_pn 1, (n) =_pan a, pa n a p n. f f (mn)=f (m)f (n), (m, n) = 1 . - f (mn)= f (m)f (n) m, n . 1 1. f f (n) =f (n1) f (n) = f (1)f (n) f (1) = 1, C nf (n) 0. , n =

ti=1peii, f (n)=

ti=1f (peii). , f f (peii) , 1 i t.2. f n =

ti=1peii. f (n)=

ti=1f (pi)ei, f f (p), p4142 8. . 9 1. Euler .2. . . 6n=

p pa(p) n N 0, n , pa(p) n. (n) =

pn (a(p) + 1)..d n d=

p p(p) 0 (p) a(p), pn., (p) a(p) + 1., n pn (a(p) + 1).3. I : N 0 C, I(n) =___1, n= 10, n > 1 .4. J : N0 C, n 1 .5. : N 0 C, :(n) =___0, 1 n(1)r, n r M obius. (1) = (1)0= 1, (2) = 1, (4) = 0, (6) = 1. Dirichlet( convolution, ) :f g(n) =_dn f (d)g(nd), f g n N0. Dirichlet 43 , f g . d g(n)=_n=d1d2 f (d1)g(d2), (d1, d2), d1d2= n. Dirichlet , f g(n) = g f (n)., , [(f g) h](n)=[f (gh)](n) f, g, h. [(f g) h](n) =_n=d1d2d3 f (d1)g(d2)h(d3) = f (gh)(n), (d1, d2, d3) n= d1d2d3. I f (n) =_dn I(d)f (nd) =I(1)f (n) =f (n), I f =f =f I. . 7 Dirichlet - I, : I(1)= 1 I(n)= 0 n > 1. - . 24 f , F(n) =_dn f (d) .. F(m1m2)= F(m1)F(m2), (m1, m2)= 1. m=m1m2. dm (d1, d2), d1 m1 d2 m2. d m. d1=(d, m1) d2=(d, m2). d=d1d2, d1 m1 d2 m2. ,, d (d1, d2)., (d1, d2) d1 m1 d2 m2, d=d1d2 m= m1m2 d1= (d, m1) d2= (d, m2). (d1, d2) d= d1d2. . d : d m1m2 =(d1, d2) : d1 m1, d2 m2. , (d1, d2) = 1, F(m1m2) =_dm1m2 f (d) =_d1m1_d2m2 f (d1d2) =_d1m1_d2m2 f (d1)f (d2) =__d1m1 f (d1)_ __d2m2 f (d2)_ = F(m1)F(m2).44 8. 10 1. (n) =_dn 1. (n) =_dn J(d), J(n) =1, n1 J . , 24 . n =

ti=1peii, (n)=

ti=1d(peii)=

ti=1 (ei+ 1) (. 2).2. 24 (n). (n) =_dn d=_dn f (d), f (n) =n. f , ., n=

ti=1p1iei, (n) =

ti=1(peii) =

ti=1(1 + pi+. . . + deii) =

ti=1pei +1i1pi1. : 25 n=

ti=1peii, (n) =

pei +1i1pi1.3. _dn (n) = n, n1 Euler. F(n) =_dn (d). , F . n=

ti=1peii, F(pe).F(pe) =_dpe (d) =_es=0(ps) = 1 +_es=1ps ps1=pe(. 3. n> 0 , (n) = 2n. . 8 n> 1 s> 1 . ns 1 n > 2 s .. s= tu, t > 1 u > 1. ntu 1= (nt 1)(nt(u1)+ . . . +nt+ 1), ns 1 , n > 2 s . Mp= 2p 1, p , - Mersenne( Father Martin Mersenne , 1588-1648). Mersenne, -45 . Mersenne . 9 n 2p1(2p 1), p 2p 1 . 4 4 .. . Euler 18 ... n= 2p1(2p 1) p 2p 1 ( 8, 2p 1 , p ). n : 1, 2, . . . , 2p1, 2p1, 2(2p 1), . . . , 2p1(2p 1). , 1 + 2 + . . . + 2p1= 2p 1 1 + 2 +. . . + 2p1+ (2p 1) + 2(2p 1) + . . . + 2p1(2p 1) == (2p 1) + (2p 1) + 2(2p 1) + . . . + 2p1(2p 1) =2p 1 + (2p 1)(2p 1) = 2p(2p 1) = 2n. (n) = 2n, n ., n . n=2k1m,k2, m (n) =2n. , 25. (n) =(2k1)(m). ,(n) =2n, (2k 1)(m) =2km (2k 1) m, m=(2k 1)m1., (m) = 2km1. m m1 m., m1= 1 , m= 2k1 , k , 8, , n= 2k1(2k 1). 5 . < 106: 6, 28, 496 8128.p= 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 Mp -, p < 257. . 24 : f , f J . 46 8. , J f (n) =_dn f (d) -f . , (. 1) (n) =_dn J(d) =J J(n), = J J. M obius. 26 f n=

ti=1peii _dn (d)f (d) = (1 f (p1))(1 f (pt)).( t= 0, n= 1, 1).. (d) d 1, 2, . . . , t. , .. d =q1 qs, q1, . . . , qs p1, . . . , pt, (d)= (1)sf (d)=f (q1)f (qs),(d)f (d) =(1)sf (q1)f (qs). , . 11 1. f (n) =1n, n N0, n=

ti=1peii_dn (d)1d= (1 1p1 )(1 1pt).2. f = J., 26 :J(n) =_dn (d)J(nd) =_dn (d) =_dn (d)I(d) =

ti=1 (1 I(pi)) =

ti=1(1 1) =___1, n= 10, n > 1= I(n). J= I = J . 27(M obius) f F . :F= J f f = F.. F= Jf F= (Jf ) F= (J)f F= I f F= f , I f =f =f I J=I =J . , f = F J f = (J ) F J f =I F=F, I f = f = f I J= I = J ., , 24. 28F F(n) =_dn f (d), f , f .47.F(n) =_dn f (d) F =f J(. J f (n)=_dn f (d). , M obius F = f J F = f J= I = J . , F( ) , f . 7 1. Dirichlet - .2. :(300), (250), s(ee 52 7).3. J f (n) =_dn f (d), f - J(n) = 1 n 1.4. _ti=1peii_=

ti=1piei_1 1p1_

_1 1pt_, M obius. (: F(n)= n f (n) = (n).)5. _dn (d)_nd_=1 _dn (d) (d) =(1)t, n=

ti=1peii. (: =J J J= I = J .)6. _dn (d)_nd_= n _dn (d) (d)= (1)tp1 pt, n=

ti=1peii.7. (n) = n_dn (d)1d.48 8. 9 , 2 . 4 a , - f (x) Q[x], f (a) = 0. 122 , x2 2. i x2+ 1. a=2+335 a 2= 335 (a 2)3= 275 a3 6a2+ 12a 8= 135 a3 6a2+ 12a 143 = 0. 2 + 335 , x3 6x2+ 12x 143 Q[x]. , -. e, , . , -.(;) 29a. -() p(x) a. a p(x). : F: Q[x] C, f (x) f (a) -, , (x), Q[x] . 4950 9. Q[x]a (x). (x) . , (x) =1(x)2(x), 0 = (a) = 1(a)2(a) 1(a) = 0 2(a) = 0, C . (x) 1(x) (x) 2(x). , 1(x) 2(x) Q, Q[x]. (x) . (x) 1q Q x, 1q(x) - a. p(x) 1q(x). g(x) a, p(x) g(x). p(x) =g(x) p(x) g(x) g(x) . 5 a Q[x] a a Q IrrQ(a)(x). 7 x27 = IrrQ(7), x2+1 = IrrQ(i)(x), x2+x+1 = IrrQ_1+i32_ =IrrQ_1i32_ (x), x2+ 3 = IrrQ(i3)(x). 8-:1+372, 1 +2 +3, 1 + 3i 2 Q[a] 29. Q[a] (C) Q[a] = f (a) : f (x) Q[x]. Q(a) - Q[a], Q(a)= f (a)g(a):f (x), g(x) Q[x], g(x) 0. 29 , Q[x]/ (p(x))Q[a]., Q[x]/ (p(x)) (p(x)) , p(x) = IrrQ(a)(x). Q[a] Q[a]=Q(a), Q[a] , Q a. Q(a) Q a. a , Q[x]Q[a] Q(x)Q(a), Q(a) - Q, Q(x) Q[x].51 30a n IrrQ(a)(x). 1, a, . . . , an1QQ(a), Q(a) = qo+ q1a+ . . . + qn1an1: qi Q, 0 i n 1. : 1, a, . . . , an1 -, Q[x] a n 1. , degIrrQ(a)(x) =n. 1, a, . . . , an1 . , Q(a)=Q[a] f (a) f (x) Q[x]. , f (x) = (x)IrrQ(a)(x) +(x), (x), (x) Q[x], deg(x) < n,f (a) =u(a), f (a) - 1, a, . . . , an1, Q(a) 1, a, . . . , an1, Q . 13 1. Q(2) = q0+q12 : q0, q1 Q, IrrQ(2)(x) =x2 2.2. , Q(i) = q0 + q1i : q0, q1 Q.3. IrrQ()(x) =x2+ x+ 1, 3. Q() = q0 + q1 : q0, q1 Q.4. IrrQ(37)(x) = x37, Q(37) = q0+q137 +q2372: q0, q1, q2 Q.x3 737,37,372, 1, , 2 x3 1. IrrQ(37)(x)= IrrQ(37)(x)=IrrQ(372)(x) = x3 7.5. q Q, IrrQ(x) = x q. q Q. Q := a C : a . Q Q C. 6a -, IrrQ(a)(x) Z[x]. Z = a Q : a . 14 1. 2, i,37, 3- , .52 9. 2. 3+i154 . ,a=3+i154 2a2+ 3a+ 3= 0,2x2+3x +3 Q[x] a., IrrQ(a)(x) = x2+32x +32

Z[x].3. a Z Z, x a Z[x]. 31(i) Q C.(ii)a Zf (x) f (a) = 0.(iii) a Q .(iv) Z Q..(i) a, Q. , f (x), g(x) Q[x]f (a) =0g() = 0. f (x) =k ni=1 (x ai) g(x) =

mj=1 (x j) f (x) g(x) C[x],

n,mi=1,j=1 (x (ai+ j)),

n,mi=1,j=1 (x (ai

j)) a+ a ai, i i n j, 1 j m, Q, Q[x]. - C Q . a Q, a Q 0a, a1 Q, Q C. f (x) =q0+q1x+. . .+qnxn Q[x] f (a) = 0, a q0 q1x+ q2x2+ . . . + (1)nqnxn. a Q. , a 0, q0 + q1a+ . . . + qnan= 0 an_qn+ qn1 1a+ . . . + q01an_= 0, a1 qn +qn1x +. . . +q0xn Q[x]. Q C.(ii) a Z, . , f (x) Z[x] a. IrrQ(a)(x), - g(x) Q[x], f (x)=IrrQ(a)(x)g(x). g(x) Gauss IrrQ(a)(x), g(x) Z[x]. a Z.(iii) a Q IrrQ(a)(x) =q0+q1x+. . .+qnxn. m- 53IrrQ(a)(x), 0=mnIrrQ(a)(a) =mnIrrQ(a)_qmm_. am=. 0 = mn_q0 + q1

m+ . . . + qn1

n1mn1+

nmn_ ==q0mn+ q1mn1+ . . .+ qn1mn1+ n. , q0mn+ q1mn1x+ . . . + qn1mxn1+ xn Z[x]. Z a=

m, .(iv) , (i), a, Z, a a Z. Z - Q . (iii) Q Z. 10 Z Q = Z.. a Z x a Z[x] a Z. Z Z Q. a Q Z x a Q[x] a Z, IrrQ(a)(x)= x a Z[x] x a Z[x] a Z, Q Z Z. , Z Q = Z. Q Q QQ . 11_Q : Q_ = ..n p . xn p Q[x] _Q_np_ : Q_= n. Q Q_np_ Q, . n Q n Q, _Q : Q_ = . 7 K Q, Q, ., (K : Q) = 2, K . . KQ (K: Q) =2, a K, aQ p(x) =IrrQ(a)(x). Q

Q(a) K, Q(a) Q K 10, Q(m) R, m 1. p p (a, c), pb, (a, b, c) = 1. , , p2 a2 p2 c2, q2b2mc2 Z m , p b, . (a, c)= 1. , 2acZ c= 1 c= 2. c= 1, a2 b2m Z a, b Z.c =2, a2b2mc2Z a2 b2m 0 mod 4. c =2(a, c) =1. a . a=2k+ 1. a2 b2 0 mod 4 b2m 1 mod 4. b . b= 2+1, b2m 1 mod 4 m1 mod 4. (*) ___c= 1, R= a+ bm : a, b Zc= 2, m 1 mod 4 R= q+bm2: a, b . m 2 3 mod 4, R= a+ m: a,Z ( R Z[m]) m 1 mod 4, R= a+m2:a, . , ,R= a+ q+m2:a,Z m 1 mod 4. R=R. q+m2R, a,Z, a+ 1+m2R. R R. q+m2R, a, . x, y Z :q+m2=x+ y1+m2. y= x=12 Z. 8k =a+ bm Q(m). a bm k k. k k + k Tr(k). norm k kk N(k).N(k) R Q(m).R( ) - R, u R u R uu= 1. u u1. R U(R). 34(i) N(k1k2) = N(k1)N(k2), k1, k2 Q(m).(ii) N(k) = 0 k= 0.56 9. (iii) r R, N(r) Z.(iv) u U(R) N(u) = 1..(i) ki= ai+ bim, 1 i 2 .(ii) k Q(m). k =0, N(k) =0. , N(k)= 0 kk= 0 k= 0k= 0. , k= 0, k= 0. N(k) = 0, k= 0.(iii) r R, IrrQ(r)(x) = x2 Tr(r)(x) + N(r). N(r) R.(iv) r R N(r) = 1, r r= 1, R R, r r, R. , r U(R). , u U(R), R u, uu= 1 N(uu) =1 N(u)N(u)= 1. , (iii) N(u), N(u) Z. N(u)N(u)= 1 N(u)= 1 ( Z 1 -1). 15 1. U(Z) = 1, 1.2. R Q(1) =Q(i). 1 3 mod 4, R= a+ i : a, Z := Z[i]. Z[i] Gauss. Z[i]. a+ i U(Z[i]), N(a+ i)=a2+ 2. a +i U(Z[i]) a2+2= 1, a2+2= 1, a2, 2> 0. a2+ 2= 1 a2= 1 2= 0 a2= 0

2= 1. U(Z[i]) = 1, 1, i, i.3. Q(5). 5 3 mod 4, Q(5) Z[5] = a +5 : a, Z. a +5, a,Z, a2+52= 1, a2+52= 1 ( a2, 2> 0)., a= 1 = 0. ,, U(Z[5])= 1, 1=U(Z).4. kQ(m), m , Tr(k) N(k) . IrrQ(k)(x) = x2 Tr(k)x+ N(k).575. k Q(i). N(k) Z, k ;34(iii) k Z[i], N(k) Z. (iii)34. k= a+ i, N(k)= a2+ 2. , : a2+ 2 Z, a, Z; k=3+4i5 N(k) =9+165= 5. (iii). 9 1. :k1=1134, k2=10+352, k3=i+552+373.2. a1, a2, a3 x3+ x2+ x+ 1 ai+2, aiaj, (1+2)ai, 1 i, j 3.3. ;2 + i, 2 +35,q+32,17 +19,3+54,1+232.4. K= Q(m) , m -k1, k2 K. k1, k2 d(k1, k2) d(k1, k2) =k1k2k1k22 d(1, m) d(1, 1+m2).5. 0a Q(m) , N(a) > 1.6. 1+72a+72Q(7), a, .7. Z u Z(m), u .8. a 0b 0Q(m)a , a N(a) N().58 9. 35 m R -Q(m). m 1m 3, U(R) = 1, 1. m=1, U(R) = 1, 1, i, i. m=3, U(R) = 1, 132, 132.. m= 1 2(15). m= 3, 3 1 mod 4. k R, k=a+32. N(k) = 1 a2+ 32= 4 a2+ 32= 4., U(R) = 1, 1, 1+32, 132, 1+32, 132., , m 1, 3. m 2, 3 mod 4 a+ m R, a,Z, N(a+ m)= 1 a2+ 2= 1 a2+ 2= 1 a= 1 = 0, m > 1., m1, 3 m 1 mod 4. k=a+m2 R, a, , N(k) = 1 a2+ m2= 4 a2+ m2= 4 a= 1 = 0, m2 22 2. , m 1, . , (. Ribenboim, "Algebraic Numbers",1972, p.132). 36K =Q(m), m. UK( ) 1, 1 (), 1, 1 , () . , - Q(m). :m2 mod 4m3 mod 4 u =a+ mQ(m) u= 1. u, u1 . u=a+ m, u, u1 = a m, ( ) 1. = 1= a1 + 1m n=n=an+ nm, n+1=a1

n+ an

1., 1 0 221= 2. 1=a1= 1 = 1 +2. m= 3, 1= 1 a1= 2, = 2 +3. m= 6, = 5 + 26 m= 7, = 8 + 37. m 1 mod 4 = 1=a+m2, a, a, . N(1) = 1 a21 m21= 4 m21= a21 4. 1 > 0 m21= a21 4... m= 5, 521= a21 4, a1= 1 1= 1, 1=1+52. , m= 13, 1=3+132. 9 R . r R , R, r = a, a, R, a U(R) U(R). r R , p a, a,, p a p . , Z, - . R . 16 1. r Q(m). N(r) = p, p , r . : r= a, a, Q(m) N(r) =pN(a) =pN(a)N()= p. , 34(iii), N(a), N() Z. , p , N(a)= 1 N() = 1, a Q(m), r Q(m).2. p Z[i]; p Z p . p Z[i] N(p)= p2 1. p Z[i]. p= (a+ i)(x+ yi)pZ[i]. p2=N(p) =(a2+ 2)(x2+ y2). pZ[i]p= (a+i)(x +yi) , a2+2 1 x2+y2 1.p= a2+2= x2+y2., p , p= a2+2.60 9. , p =a2+ 2a,Z. p =(a+i)(ai) N(a+i) = a2+2= p1, a+i , a i . p . , p Z[i] ... 2= 1 + 1, 5= 1 + 22, 13= 22+ 32 Z[i]. 7,11,19 Z[i].3. 5 Z[2]:N(5) =25 1 5 Q(2). 5 =(a+ 2)(x+ y2) N(a+ 2) 1, N(x+ y2) 1,a222 1 x22y2 1. N(5) = N(a+2)N(x +y2) 25 = (a2 22)(x2 2y2). a2 22= 5. :0,1,4,5,6,9. :0,2,8. a222= 5, a222= 5 a2 22= 5. a 5 22 0. , , 5 a5 . 25 (a2 22), , N(x+ y2) = 1.4. Z[6] , 23 =6(6). 2, 3,6, 6 - 23 . Q(6) Z[6], 6 2 mod 4. , - U(Z[6]) = 1, 1. 2 3 =6(6) Z[6], 6 6. 2 =(a+6)(x+y6) 2Z[6], a, , x, y Z. N(2) =(a2+ 62)(x2+ 6y2) a2+ 62= 1 x2+ 6y2= 4 a2+ 62= 1 x2+ 6y2= 4 (1) a2+ 62= 4 x2+ 6y2= 1 a2+ 62= 4 x2+ 6y2= 1 (2) a2+62= 2 x2+6y2= 2 a2+62= 2 x2+6y2= 2 (3). (3) , a, , x, y Z, (1) (2) a+ 6 x+ y6 61 Z[6]. 2 . 3,6, 6 -. 2,63,6 -, 2 6 3 6. , 23 =6(6) 6 , Z[6] - . 1801 Gauss :1. K= Q(m), R .2. m= 1, 2, 3, 7, 11, 19, 43, 67, 163 - R . 2. 1966 Stark Baker, 1. . : 37Q(1),Q(2),Q(3),Q(7),Q(11) , R . 38 Q(m) m=2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 R- . R , ( ):m= 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93,94, 97. 39 R - . 40 R -K=Q(m): m=5, 6, 10, 13, 14, 15, 17, 21, 22, 23, 26, 29, 30, 10, 15, 26, 30.62 9. [1] . , , , 1988[2] E. Grosswald, Topics from the Theory of Numbers, Birkhauser, 1988[3] H. E. Rose, A Course in Number Theory, Oxford S.P., 1996[4] I. Niven & H. Zuckermann & H. Montgomery, An Introduction to theTheory of Numbers, J. Wiley, 1991[5] R. Molin, Fundamental Number Theory withApplications, CRSPress, 1998[6] P. Ribenboim, The Book of Prime Numbers, Springer, 1988[7] P. Ribenboim, My Numbers, My Friends, Springer 2000[8] P. Ribenboim, The Classical Theory of Algebraic Numbers, Springer-Verlag, 2000[9] R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994[10] G. Tenenbaum & M. Mendes Frauce, The Prime Numbers and theirDistribution, AMS, 2000[11] . & . , , , 1991[12] . , - , , - ..., 2008[13] A computational Introducion: Number Theory and Algebra, Cam-bridge, 200563