Author
t66chris
View
244
Download
10
Embed Size (px)
DESCRIPTION
Β ΛΥΚΕΙΟΥ - ΠΟΛΥΩΝΥΜΑ
.- .
130
(1) x vax , .
. . 3 2 712 , ,05
x x x x .
x .
. . 05155 x== 3x
13 3xx
= 1 .
(2) x : 1
1 1 0( ) ...v vv vP x a x a x a x a= + + + + 011 ,,...,, , x
: 11 1 0, ,..., ,v v
v va x a x a x a
: 1 1 0, ,..., ,v va a a a
: 0a
: 1
1
0
00
( )0
v
v
a
a
P x ca
a c
= = =
= =
,
.
: 1
1
0
00
( ) 000
v
v
a
a
P xa
a
= = =
= =
. . 3 2( ) 5 2 3P x x x x= + , 3( ) 3 2 1Q x x x= + x , 1( ) 3 5 2f x xx
= + x .
. . 3 4 5( ) 2 7 3 1P x x x x x= + + + 5 4 3 2( ) 3 2 0 7 1P x x x x x x = + + + +
.- .
131
(3) : x . . . 3 2( ) 5 2 7P x x x= + 3 .
( )P x c= 01 xccc ==
( ) 0P x = 0 20 0 0 ... 0 vx x x= = = =
(4) ( )P x x = ( )P . x .
. . 2( ) 5 3 1P x x x= + 2x = 2(2) 5 2 3 2 1 15P = + =
(5) ( x = ( )P x ) ( ( ) 0)P = . . 3 2( ) 3 2 5 10P x x x x= + +
1x = ( )P x 3 2(1) 3 1 2 1 5 1 10 0P = + + =
(6) 11 1 0( ) ...v vv vP x a x a x a x a= + + + +
11 1 0( ) ...v vv vQ x x x x = + + + +
1 1
0 0
( ) ( )v va
P x Q xa
a
= = = =
i). ii). .
(7)
- .
:
1. ,
.
2.
.
.- .
132
1. 2)4()2()4()( 22233 +++= xxxxP . )(xP .
2)4()2()4()( 22233 +++= xxxxP :
A. 043 0)4( 2 0)2)(2( + 0 02
02 + 0 2 2 3x . , )(xP 3.
B. 043 = 0= 2= 2= )(xP :
0= , )(xP : 2400)( 23 ++= xxxxP 1. 2= , )(xP : 0000)( 23 +++= xxxxP
, .
2= , )(xP : 4080)( 23 ++= xxxxP 2.
2. 83)2()4()( 22232 +++= xxxxP 22 2)23()( ++= xxxQ . .
83)2()4()( 22232 +++= xxxxP 22 2)23()( ++= xxxQ , :
=+= 08283 22 2= 4=
=== 0)2(022 22 0= 2= =+=+ 02232 22 1= 2=
= 042 2= 2=
, 2= .
.- .
133
3. 32)()()( 2223 +++= xxxP . )(xP
i). ii). iii).
i). 32)()()( 2223 +++= xxxP x . , :
03 = 02 =+
0)1( 2 = 0)1( =+ 0)1)(1( =+ 0)1( =+
0= 1= 1= 0= 1=
0= 1=
ii). 32)()()( 2223 +++= xxxP , . ,
03 = 0= 1= 1=
02 =+ 0= 1=
0322 = 1= 3=
1=
iii). 32)()()( 2223 +++= xxxP , :
03 = 0= 1= 1=
02 =+ 0= 1=
0322 1 3
0= .
4. 652)( 23 += xxxxP .
.- .
134
i). )(xP 3=x ii). 2 ,1 ,1 )(xP
i). 652)( 23 += xxxxP 3=x x -3.
24615182761592276)3(5)3(2)3()3( 23 =++=++=+=P ii).
. :
06521615121)1( 23 =+=+=P 1 )(xP 0865216)1(5)1(2)1()1( 23 =++=+=P -1
)(xP . 0610886)2(5)2(2)2()2( 23 =++=+=P -2
)(xP ..
5. 3)3()1()( 23 ++= xxxxP . , )(xP 2 1=x 6.
3)3()1()( 23 ++= xxxxP 2 0)2( =P 032)3(22)1( 23 =++
03)3(24)1(8 =++ 0326488 =+++
856 =+ (1)
3)3()1()( 23 ++= xxxxP 1=x 6
6)1( =P 63)1()3()1()1()1( 23 =++ 63)3()1( =+++ 6331 =++++
523 =+ (2)
.- .
135
(1) (2) :
=+
=+
523856
3= 2=
6. xxxP 2)( 3 = i). )1()2()( = xPxPxQ ii). )(xQ iii). 2 1 )(xQ
i). )2(2)2()2( 3 xxxP = xx 48 3 = ( xx 2 ) 1322133)1(2)1()1( 23233 ++=++== xxxxxxxxxxP ( 1 xx ) ,
)1()2()( = xPxPxQ =++= )13(48 233 xxxxx 1348 233 += xxxxx
1537)( 23 += xxxxQ
,
ii). )(xQ 3 : 1 ,5 ,3 ,7 23 xxx iii). 2 )(xQ 0)2( =Q
=+= 1)2(5)2(3)2(7)2( 23Q =++ 11043)8(7 04591256 =++= 2 )(xQ
1 )(xQ 0)1( =Q
=+= 1)1(5)1(3)1(7)1( 23Q 1513)1(7 ++ 077 =+= 1 )(xQ .
.- .
136
235 3
25 78 1
, = + 0 <
235 3 78 1= + , 1 =
234 3
24 78
0
, = + 0 =
234 3 78=
( )x ( ) 0x ( )x ( )x : ( ) ( ) ( ) ( )x x x x = + ,
( ) 0x = ( ( )x )
.- .
137
( )x ( )x ( )x ( )x
S. O. S. ( )x
:
i). 3 2( ) 2 2 3F x x x x= + 1x ii). ( )F x iii). ( ) 0F x =
322 23 + xxx 1x 23 22 xx + 22x x4+ +3
34 2 xx
xx 44 2 +
33 x
33 + x
0
0 .
, =)(xF 322 23 + xxx :
)342()1(322 223 ++=+ xxxxxx
= 0)(xF 0)342()1(0322 223 =++=+ xxxxxx 01=x
0342 2 =++ xx 08(
.- .
138
:
x a v vx a
x a+ 2 1 2 1x a + ++
!!!.
() 5 ( x ( )P x ) ( ( ) : ( )P x x ) ( ( )x . ( ) ( ) ( )P x x x = ) ( x = ( )P x ) (
( ) 0P = )
() ( )P x x ( )P =
S. O. S. () () .
1. 4 3( ) 3 2 2P x x x x= + + : i. 1x ( )P x ii. ( )P x 1x + 2 = .
2. 4 3 2( ) 2 7P x x x x x = + + + . ( )P x 1x 3x + .
3. 3 2( ) ( 2 3) 3 3P x x a x ax a = + + + + . , 1x + ( )P x ( ) : ( 2)P x x + 4 = .
4. 4 3 2( ) 5 3 7 4P x x x x= + 2x + . 5. ( )P x 2x 1
3+x -14. )(xP 62 + xx .
1.
4 3( ) 3 2 2P x x x x= + + . 1x ( )P x = 0)1(P =++ 0212113 34 = 62 3=
.- .
139
, ( )P x 1x + 2 = :
2)1( =P =++ 22)1(2)1()1(3 34 =+ 0213 = 22 1=
2. T 4 3 2( ) 2 7P x x x x x = + + + 1x , 3x + : 0)1( =P 0117121 234 =+++ 4=+ (1) 0)3( =P
0)3()3(7)3(2)3( 234 =+++ 03635481 =+ 363 =+ 363 = (2)
(1) (2) 128324
3634 )(
===
=
=+ +
8= 12=
..
3. 3 2( ) ( 2 3) 3 3P x x a x ax a = + + + + . 1x + ( )P x 0)1( =P
03)1(3)1)(32()1( 23 =++++ 4=+ (1) ( ) : ( 2)P x x + 4 = 4)2( =P
=++++ 43)2(3)2)(32()2( 23 247 =+ (2)
(1) (2)
32
310
620206
2474 )(
====
=+
=+
32
= 3
10=
4. 4 3 2( ) 5 3 7 4P x x x x= + 2x + : 4)2(7)2(3)2(5)2( 234 +== P = 447)8(3165 + =
244282480 = 24)2( == P 5. )(xP :
)(xP 2x 1 1)2(11 == P )(xP 3+x -14
14)3(142 == P
.- .
140
)6(:)( 2 + xxxP 62 + xx 2 , += xx)( , .
: +++= xxxxxP )()6()( 2 (1) (1) 2=x :
+++= 2)2()622()2( 2P ++= 2)2(01 12 =+ (2) (1) 3=x :
+++= )3()3()]6)3()3[()3( 2P += 3)3(014 143 =+
(3)
(2) (3)
=+
=+
14312
=
=
53
, )(xP 62 + xx 53)( = xx .
.- .
141
HORNER
Horner
:
( )P x x ( )x + ( )P x .
( )P x x ( )x + .
( )P x x = ( x
= ).
Horner :
: 3( 2 1) : ( 2)x x x+ + :
1 : x . :
3 32 1 2 1x x x x+ = + ( 2x + ) 2 : x
. 3 3 22 1 2 0 1 1x x x x x+ = + +
3 : Horner
2,0,1, 1 -2 ( 2 0x + = 2x = ).
4 :
-2,
.
5 : .
=0 x - x =
. ( )
.- .
142
Horner ( )
32 1x x+ 2x + 3 22 4x x 22 4 9x x +
24 1x x +
24 8x x+
9 1x
9 18x
19
2 0 1 -1 2=
-4 8 -18
2 -4 9 -19
, 2( ) 2 4 9x x x = + 19 = . : 3 22 1 ( 2)(2 4 9) 19x x x x x+ = + +
..
: 1912 3 =+ xx
Horner :
1912 3 =+ xx
1919)942)(2( 2 =++ xxx 0)942)(2( 2 =++ xxx
2=x 0942 2 =+ xx
2=x ( 0567216
.- .
143
( )f x ( )x .
( )x x = 1 ( )f x : x 2 Horner
3 : ( )f x x ( )f =
1. ( ( )P x ( )( )x x ( )P x ( )x ( )x
2. ( )P x 2( )x ( ) 0P x = x = 2 x =
( ) 0P = ( ) 0 = ( )x ( )P x : ( )x .
1. 4 2( ) 5 3P x x x x= + . ( ) : ( 2)P x x + .
2. 3( ) 7 6f x x x= + I. ( ) : ( 3)f x x + II. ( ) 0f x =
3.
.- .
144
I. )(xP ))(( xx )(xP ( )x ( )x
II. +++= xxxxP 23 4)( . , )(xP 322 + xx ( 1).
4. ++= 23)( xxxP . , )(xP 442 + xx ( 2).
1. ( ) : ( 2)P x x + 4 2( ) 5 3P x x x x= + 350 234 ++ xxxx 2+x
4x 32x 3x 22x x 3+
32x 35 2 + xx
23 42 xx ++
32 + xx
xx 22 ++
33 x
63 x
9
, ( ) : ( 2)P x x + 9= . 2 : Horner
1 0 -5 1 -3 2=
-2 4 2 -6
1 -2 -1 3 -9
, 9= 3
954520163)2()2(5)2()2( 24 ===+== P
2. ( ) : ( 3)f x x + 3( ) 7 6f x x x= +
.- .
145
670 23 ++ xxx 3+x
3x 23x 2x x3 2+
673 2 + xx
23x+ x9+
62 +x
62 x
0
0= . , 3( ) 7 6f x x x= + )23)(3( 2 ++= xxx
= 0)(xf =++ 0)23)(3( 2 xxx 03 =+x 0232 =+ xx
3=x 1=x 2=x
2 : Horner :
1 0 -7 6 3=
-3 9 -6
1 -3 2 0
0= . , 3( ) 7 6f x x x= + )23)(3( 2 ++= xxx
= 0)(xf =++ 0)23)(3( 2 xxx 3=x 1=x 2=x
3. I. : )(xP ))(( xx .
)(x : )())(()( xxxxP = (1) (1):
=x 0)()()(0)( == PP =x 0)()(0)()( == PP
, )(xP )( x )( x
.- .
146
: )(xP )( x )( x . , 0)( =P 0)( =P . )(xP
))(( xx . ))(( xx 2 , : += xx)( , . , :
++= xxxxxP )())(()( (2) (2)
=x : 0)()(0)( =+++= P (3) =x : 0)(0)()( =+++= P (4)
(3) (4)
00)(0)( ===++
(3) 0= 0= . , )(xP ))(( xx , )(xP
))(( xx .
. +++= xxxxP 23 4)( 322 + xx )3)(1( += xx . ,
)(xP )1( x 5011410)1( 23 =+=+++= P (1)
)(xP )3( +x 930)3()3(4)3(0)3( 23 =+=+++= P (2)
(1) (2)
=+
=+
935
=
=
61
4. 22 )2(44 =+ xxx . , ++= 23)( xxxP 2)2( x , )(xP )2( x )(xP )2( x )2( x .
)2(:)( xxP
.- .
147
1 0 2=
2 42 + 84 +
1 2+
42 +
84 ++
42)2()( 2 ++++= xxx 84 ++= . , ,
0840 =++= (1) , 42)2()( 2 ++++= xxx )2( x :
042)2(20)2( 2 =++++= ax 042424 =++++ a 124 = 3=
, (1) : =++ 08)3(4 4=
.- .
148
- :
11 1 0... 0
v v
v va x a x a x a
+ + + + = , 0va
. . 6 23 5 6 0x x + = 6
35 2 1 0x x + = 3
25 2 3 0x x+ =
x =
, ( ) 0P = .
. . 3 6 5 0x x + = 1x =
3( ) 6 5P x x x= + ( 3(1) 1 6 1 5 0P = + = )
,
.
1 2( ) 0 ( ) ( ) ... ( ) 0P x P x P x P = = 1
2
( ) 0( ) 0
( ) 0
P xP x
P x
= = =
3 1 2
.- .
149
11 1 0( ) ...v vv vP x a x a x a x a= + + + +
( ) 0P x =
x = .
x =
0a .
x = ( ) 0a .
i). ( ) .
.
ii). .
. . += 22x
.
iii). .
. . 5 4( ) 3 2 5 3 3f x x x x= + .
:
1. : 01892 23 =+ xxx
01892 23 =+ xxx 0)2(9)2(2 =++ xxx 0)9)(2( 2 =+ xx 0)3)(3)(2( =++ xxx 02 =+x 03 =x 03 =+x 2=x 3=x
3=x
..
.- .
150
2. : 041583 23 =++ xxx
041583 23 =++ xxx : 4 : 1 , 2 , 4
Horner
41583)( 23 ++= xxxxP . ,
3 8 -15 4 1=
3 11 -4
3 11 -4 0
, 0)1( =P 1 )(xP
3 8 -15 4 1=
-3 -5 20
3 5 -20 24
, 024)1( =P -1 )(xP
3 8 -15 4 2=
6 28 26
3 14 13 30
, 030)2( =P 2 )(xP
3 8 -15 4 2=
-6 -4 28
3 2 -19 32
, 032)2( =P -2 )(xP
3 8 -15 4 4=
.- .
151
12 80 280
3 20 65 284
, 0280)4( =P 4 )(xP
3 8 -15 4 4=
-12 16 -4
3 -4 1 0
, 0)4( =P -4 )(xP , : 4,1 .
[2 1 )(xP )4113)(1()( 2 += xxxxP
041583 23 =++ xxx 0)4113)(1( 2 =+ xxx 01=x
04113 2 =+ xx 1=x 4=x 31
=x ]
..
3. : 0234 =+ xx
1 , 2
Horner
23)( 4 += xxxP . ,
1 0 0 3 -2 1=
1 1 1 4
1 1 1 4 2
, 02)1( =P 1 )(xP
1 0 0 3 -2 1=
-1 1 -1 -2
.- .
152
1 -1 1 2 -4
, 04)1( =P 1 )(xP 1 0 0 3 2 2=
2 4 8 22
1 2 4 11 24
, 24)2( =P 2 )(xP 1 0 0 3 2 2=
-2 4 -8 10
1 -2 4 -5 12
, 012)2( =P -2 )(xP , 0234 =+ xx .
.- .
153
( ) ( )A x B x> , ( )A x , ( )B x . ( ) ( )A x B x> ( ) ( ) 0A x B x >
( ) 0P x > 1 2( ) ( ) ... ( ) 0P x P x P x > (1 2 ) .
!! 2[ ( )] 0A x > x , 2 1[ ( )]A x + ( )A x .
:
1. 3 23 5 9x x x+
2. 4 3 23 9 9 2 0x x x x +
3. 2
24 2
1 1 1x
x x x
+
4. 2 3 1 1x x+ + >
1. 3 23 5 9x x x+ 0935 23 ++ xxx .
0935 23 =++ xxx 1 , 3 , 9 -1 Horner :
1 -5 3 9 1=
-1 6 -9
1 -6 9 0
)96)(1(935 223 ++=++ xxxxxx : 0935 23 ++ xxx 0)96)(1( 2 ++ xxx + 0)3)(1( 2xx 1x
xx 0)3( 2
.- .
154
2. 4 3 23 9 9 2 0x x x x +
02993 234 =+ xxxx 1 , 2 . 1
Horner :
3 -1 -9 9 -2 1=
3 2 -7 2
3 2 -7 2 0
)2723)(1(2993 23234 ++=+ xxxxxxxx Horner 2723 23 ++ xxx . : 1 , 2 .
1
3 2 -7 2 1=
3 5 -2
3 5 -2 0
, )253)(1(2723 223 +=++ xxxxxx :
4 3 23 9 9 2 0x x x x + ++ 0)2723)(1( 23 xxxx + 0)253)(1)(1( 2 xxxx + 0)253()1( 22 xxx [ xx 0)1( 2 ]
0253 2 + xx 049242542 >=+==
=
=
31
2
675
2,1x
:
x
2 31
+
253 2 + xx + - +
, 0253 2 + xx 2x 31
x :
4 3 23 9 9 2 0x x x x +
.- .
155
3. 2
24 2
1 1 1x
x x x
+ . . . = 1)1)(1( 2 =+ xxx
012x 1x 1x . 2
24 2
1 1 1x
x x x
+ 0
12
14
1 22
+ xxx
x 0
12
1)1(4
1)1(
222
2
+
xx
x
x
xx
01
2442
23
x
xxx 0
164
2
23
x
xxx 0)1)(64( 223 xxxx
6423 xxx 1 , 2 , 3 , 6
3 6423 xxx . Horner
:
1 -1 -4 -6 3=
3 6 6
1 2 2 0
6423 xxx )22)(3( 2 ++= xxx : 0)1)(64( 223 xxxx 0)1)(22)(3( 22 ++ xxxx
222 ++ xx 04
.- .
156
2 3 1 1x x+ + > 1132 ++>+ xx 22 )11()32( ++>+ xx
112132 ++++>+ xxx 112 + 3>x
.- .
157
(1)
.
:
1. 2 2 2 2( 5 7) 4( 5 5) 5 6 3x x x x x x + + + + + = 2. 2 2 2( 2 1) 3( 2 3) 14 0x x x x+ + + + = 3. 10 533 32 0x x + =
4. 6 35 6 0x x + =
[ (3) (4) : 2 0v vax x + + = . vx = ]
1. 2 2 2 2( 5 7) 4( 5 5) 5 6 3x x x x x x + + + + + = (1) xx 52 = (1) :
36)5(4)7( 2 =+++++ 0920449142 =++++++ 078192 =++ 13= 6= . ,
13= : = 1352 xx 01352 =+ xx ( 0
.- .
158
3. 10 533 32 0x x + = (1) : =5x 22510 )( == xx (1) : 032332 =+ 1= 32=
1= : 15 =x 1=x
32= : 325 =x 5 32=x 2=x .
.
4. 6 35 6 0x x + = (1) =3x 2236 )( == xx (1) : 0652 =+ 2= 3= .
2= : 23 =x 3 2=x
3= : 33 =x 3 3=x
.- .
159
(2)
. . 2
23 2 7
1 5 1x x
x x
++ =
2 2( 3) 5( 3) 7
5 3 2x x x+
+ =
1. . . . 0 .
2. . . . 3. !!!
.
: :
i). 2 2
23 1 2 3 2
1x x x
x x x x
+ =
ii). 2 22 1 0
2 1 2x
x x x+ =
i). 2 2
23 1 2 3 2
1x x x
x x x x
+ =
x
xx
xxx
x 23)1(
2113 22 +
=
)1(... = xx : 0)1( xx 0x 1x , :
x
xxxx
xxxx
x
xxx
23)1()1(2)1(
113)1(
22 +=
)23)(1(2)13( 22 += xxxxx 232323 2233 ++= xxxxxxx 0642 23 =+ xxx 032 23 =+ xxx 0)32( 2 =+ xxx 0=x 0322 =+ xx
0=x () 1=x () 3=x . ..
.- .
160
ii). 2 22 1 0
2 1 2x
x x x+ =
0)12(
112
22 =
+xxx
x
)12(... = xx : 0)12( xx 0x 012 x
21
x . , :
0)12(1)12(
122)12()12( 2 =
+
xxxx
xxxxxx
0122 34 =+ xxx 0)1()1(2 33 =++ xxx 0)1)(12( 3 =+ xx
12 =x 013 =+x
21
=x () 13 =x 1=x
.- .
161
(3)
.
. . 2 1 2x x + =
2 2 3 13x x +
,
( ) .
!! .
!! .
: :
1. 42 =++ xx
2. 1413 =++ xx
3. =+ xx 12
4. 0233 2 = xx
5. 02410152 =+ xxx
1. 42 =++ xx (1) , 02 +x 2 x .
42 =++ xx xx =+ 42 =+ 22 )4()2( xx
28162 xxx +=+ =+ 01492 xx 2=x 7=x
.- .
162
2=x (1) : 444224244222 ==+=+=++
7=x (1) : 4104734794727 ==+=+=++ , 7=x , 2=x .
2. 1413 =++ xx :
3113013 + xxx
404 + xx
31
x . :
1413 =++ xx 1413 ++=+ xx (1) (1) . :
1413 ++=+ xx ++=+ 22 )14()13( xx
142)4(13 2 ++++=+ xxx 142413 ++++=+ xxx
4242 += xx 42 += xx (2) (2) 04 +x 202 xx .
31
x . ,
2x . :
42 += xx 22 )4()2( += xx 4442 +=+ xxx 052 = xx = 0)5(xx 0=x 5=x .
0=x 2x .
5=x .
3. . :
012 +x x .
.- .
163
0 x x ( 2 1 ) :
=+ xx 12 1221)()1( 2222222 =+=+=+ xxxxxx (1)
0= (1) 10 = x
0 (1)
2
12 =x
x
o
2
12
02
12
0
221 22
0
212
+ 0
212
0
.
4. 0233 2 = xx (1) 0x . 3 x=
: 2233 2 )( == xx (1) : 022 = 1= 2=
11 3 == x
822 3 === xx
5. 02410152 =+ xxx (1) 0x . x= : 22)( == xx 442 )( == xx (2) :
0241015 24 =+ (2) 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 . 1 ,
1 0 -15 -10 24 1=
1 1 -14 -24
1 1 -14 -24 0
.- .
164
(2) : 0241015 24 =+ 0)2414)(1( 23 =+ (3) , 241423 + 2
Horner
1 1 -14 -24 2=
-2 2 24
1 -1 -12 0
)12)(2(2414 223 +=+ , (3) :
=+ 0)2414)(1( 23 0)12)(2)(1( 2 =+ 01= 02 =+ 0122 = 1= 2= 3= 4=
:
1= : 1=x 1= x
2= : 2=x
3= : 3=x
4= : 164 == xx .
.- .
165
1.
I. 53)1(3)( 22 += xxxP .
.
.
.
.
II. )2()2()4()( 22 ++= xxxP , :
. -2 . -1 . 0 . 1 . 2
III. 8)1()1()1()( 232 ++++= xxxxP
. -1 . 0 . 1 . . IV. 1)23()1()( 235 +++= xxxP
. -1 . 0 . 1 . -5 . 5
V. 8)1()1()( 5 ++= xxxP , , )1()1()1()1()( 2233 ++= xxxxq
. 3 . 2 . 1 .
.
VI. 5)( 3 += xxxP ++= 5)( 23 xxxQ ,
. -1 . 0 . 1 . 5 . -5
VII. 1)32()( 21 ++= + xxxxP 1(3)( 21998 ++= xxxxq
.- .
166
. 1 . -1 . 0 . 1998 . VIII. 011 ...)( +++= xxxP .
0 :
. 00 > . 00 . 1998> . 1997= . 1997= .
XII. )(xP : 852)()1( 462 += xxxxPx )(xP :
. 3 . 4 . 5 . 6 .
.- .
167
2.
4)2()2()( 223 +++= xxxP .
3. 3)62()2()( 2 ++++= xxxP .
4. ,,
2)()( 2 += xxxP +++= xxxQ 4)()( 2
5. 27839)( 23 += xxxxP : )93()3(3)( 223 ++++ xxxxxx
6. )(xK 4432)( 234 ++= xxxxxP
7. xxxxP +++= 325 )23()1()(
.21
8. 2)1()( 2 ++= xxxP -1 xxxxK )1(4)( 223 ++= . ;
9. )(xP : 3223)()1( 23452 ++=+ xxxxxxPx
10. .52)( 2 ++= xxxP 13)1( =P .
11. ,
xxxP )102()2()( 2 ++= .
.- .
168
12. 32)94()94()( 2233 ++= xxxP .
13. )(xP 269)23( 2 += xxxP )(xP .
14. )(xP 1 )(xQ )23(3)()12()( 2 = xPxPxxxQ
i. )(xQ ii. )53( xP 2.
15. I. )(xP -2 . 2x . 2+x . 12 +x . 12 x . x2
II. )(xP 2 -1
. 2x
1x
. 2+x
1x
. 2+x
1+x
. 2x
1+x
. 12 x
12 +x
III. )(xP 12 +x )(xP
. 2 . -2 . 1 .
21
. 21
IV. 5 , :
. 2
. 2
.- .
169
. 2
. 3
. 3
V. , 3 :
. 3
. 2
. 2
. 2
VI. 3)( 248 +++= xxxxP x . :
. 0> . 0
.- .
170
. 72 24 + xxx
. 92 246 + xxx
. 52 68 ++ xx
X. )(xP ( ) 3)( x . )(:)( xxP
. -3 . -1 . 0 . 1 . 3
16.
i. )1(:)922( 2235 + xxxx ii. )5(:)1527( 334 ++ xxxx iii. )2(:)43( 233 + xxx iv. )(:]9)79(7[ 223 ++ xxx
17. )(xf 12 +x 13 x
52 +x .
18. ,
1)( 4 += xxP ++ xx 2 0.
19. 4)( 23 +++= xxxxf 2x 8)1( =f , .
20. ++= xxxxP 132)( 23 . )(xP 62 xx , .
21. )14(3)13(2)( 222 +++= xxxP . )2(:)( +xxP .
.- .
171
22. )(xP 5x )32( xP 4x
23. Horner .
i. )2(:)652( 23 + xxxx ii. )1(:)362( 245 +++ xxxx iii. )(:]3)62(6[ 223 ++ xxx , iv. )12(:)24( 256 + xxxx
v. )1(:)21( 2325 ++ xxxx ,
24. ,
5)1()( 23 ++= xxxxP )2)(1( + xx
25. ,
10)3()( 23 +++= xxxxP 2)2( x .
26. )(xP )2( x 10 )3( +x 5. )(xP
)3)(2( + xx
27. )(xP )2( +x 3 2 4 3x x + 72 +x .
)34)(2(:)( 2 ++ xxxxP .
.- .
172
28.
i. 0652 =+ xx
ii. 022 23 =+ xxx
iii. 0223 34 =+ xxx
iv. 073 24 =++ xx
v. 032 3 =++ xx
29. xx' .
i. 42)2()( 2 += xxxf ii. xxxg 3)( 3 = iii. 23)( 24 += xxxh iv. 45)( 5 += xxxK v. 5)1()( 24 +++= xxx
30.
xx' .
i. 23)( 23 ++= xxxxf ii. xxxg 5)( 2 = iii. 423 )1()( xxxh += iv. 2)1()( 2 = xxK v. 2)( 24 += xxx
31. 023 23 =++ xxx , :
. -1 . 1 . -2 . 2 . 3
32. 023 =++ xxx , , 3
:
. 6 . 10 . 12 . 15 . 18
.- .
173
33. += xx3 ,
. 1 . -1 .
32
. 4 .
45
34. xx 25 = ,
. ),0( + . )0,( . ),5[ + . ]5,( . ]5,0[
35. 53 =+ xx ,
.
. 2 . 3 . 4 . 5 . 6
36. ( ) : i. 783 + xx
ii. 0265 234 =++ xxxx
iii. 02)2( 3 =++ xxxx iv. 0)4(3)4)(1( 4 =++ xxx v. 012872 234 =++ xxxx
37. 0195 2 =+ xx .
38. , : 01)1(28 2 =+ xx .
39.
i. 022 23 >+ xxx
ii. 953 23 + xxx
iii. 02993 234 + xxxx
iv. 463 34 + xxx
v. xxxxx 176)12(10)43( 24 +
.- .
174
40. 01235 =++ xxxx .
, .
41.
i. 089 36 =+ xx
ii. 08)23(9)23( 3262 =+++ xxxx iii. 04)2(3)2( 48 =++ xx iv. 04)1211(3)1211( 2343 =++ xxxx
v. 06)1(5)1( 2 =+x
x
x
x
42. 045 =+++ xxx . ,
-1 2 ( ). .
43. 01123 =+ xx
: )3 ,4( , )1 ,0( , )4 ,3( .
44.
i. 1
312
1 2 =
++
+ xx
x
x
x
ii. 22
242
xx
xx=
+
45.
i. 12
423