of 51 /51
΄Αλγεβρα Β΄ Λυκείου Πετσιάς Φ.- Κάτσιος Δ. 130 ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ (1) Μονώνυμο του x καλούμε κάθε παράσταση της μορφής v ax όπου α , Ν ν . Π. χ. 3 2 7 1 2 , ,0 5 x x x είναι μονώνυμα του x . Κάθε πραγματικός αριθμός είναι μονώνυμο του x . Π. χ. 0 5 1 5 5 x = = ενώ 3 x δεν είναι μονώνυμο γιατί 1 3 3x x = και Ν 1 . (2) Πολυώνυμο του x καλούμε κάθε παράσταση της μορφής : 1 1 1 0 () ... v v v v Px ax a x ax a = + ++ + όπου Ν ν και 0 1 1 , ,..., , α α α α ν ν , x Όροι : Τα μονώνυμα 1 1 1 0 , ,..., , v v v v ax a x axa Συντελεστές :οι αριθμοί 1 1 0 , ,..., , v v a a aa Σταθερός όρος : 0 a Σταθερό πολυώνυμο : 1 1 0 0 0 () 0 v v a a Px c a a c = = =⇔ = = , δηλαδή κάθε πραγματικός αριθμός είναι ένα σταθερό πολυώνυμο. Μηδενικό πολυώνυμο : 1 1 0 0 0 () 0 0 0 v v a a Px a a = = =⇔ = = Π. χ. 3 2 () 5 2 3 Px x x x = + , 3 () 3 2 1 Qx x x =− + είναι πολυώνυμα του x , ενώ 1 () 3 5 2 f x x x = + Δεν είναι πολυώνυμο του x . Πλήρες και διατεταγμένο πολυώνυμο Π. χ. 3 4 5 () 2 7 3 1 Px x x x x =− ++ + 5 4 3 2 () 3 2 0 7 1 Px x x x x x = ++ ++

Β ΛΥΚΕΙΟΥ - ΠΟΛΥΩΝΥΜΑ

Embed Size (px)

DESCRIPTION

Β ΛΥΚΕΙΟΥ - ΠΟΛΥΩΝΥΜΑ

Text of Β ΛΥΚΕΙΟΥ - ΠΟΛΥΩΝΥΜΑ

  • .- .

    130

    (1) x vax , .

    . . 3 2 712 , ,05

    x x x x .

    x .

    . . 05155 x== 3x

    13 3xx

    = 1 .

    (2) x : 1

    1 1 0( ) ...v vv vP x a x a x a x a= + + + + 011 ,,...,, , x

    : 11 1 0, ,..., ,v v

    v va x a x a x a

    : 1 1 0, ,..., ,v va a a a

    : 0a

    : 1

    1

    0

    00

    ( )0

    v

    v

    a

    a

    P x ca

    a c

    = = =

    = =

    ,

    .

    : 1

    1

    0

    00

    ( ) 000

    v

    v

    a

    a

    P xa

    a

    = = =

    = =

    . . 3 2( ) 5 2 3P x x x x= + , 3( ) 3 2 1Q x x x= + x , 1( ) 3 5 2f x xx

    = + x .

    . . 3 4 5( ) 2 7 3 1P x x x x x= + + + 5 4 3 2( ) 3 2 0 7 1P x x x x x x = + + + +

  • .- .

    131

    (3) : x . . . 3 2( ) 5 2 7P x x x= + 3 .

    ( )P x c= 01 xccc ==

    ( ) 0P x = 0 20 0 0 ... 0 vx x x= = = =

    (4) ( )P x x = ( )P . x .

    . . 2( ) 5 3 1P x x x= + 2x = 2(2) 5 2 3 2 1 15P = + =

    (5) ( x = ( )P x ) ( ( ) 0)P = . . 3 2( ) 3 2 5 10P x x x x= + +

    1x = ( )P x 3 2(1) 3 1 2 1 5 1 10 0P = + + =

    (6) 11 1 0( ) ...v vv vP x a x a x a x a= + + + +

    11 1 0( ) ...v vv vQ x x x x = + + + +

    1 1

    0 0

    ( ) ( )v va

    P x Q xa

    a

    = = = =

    i). ii). .

    (7)

    - .

    :

    1. ,

    .

    2.

    .

  • .- .

    132

    1. 2)4()2()4()( 22233 +++= xxxxP . )(xP .

    2)4()2()4()( 22233 +++= xxxxP :

    A. 043 0)4( 2 0)2)(2( + 0 02

    02 + 0 2 2 3x . , )(xP 3.

    B. 043 = 0= 2= 2= )(xP :

    0= , )(xP : 2400)( 23 ++= xxxxP 1. 2= , )(xP : 0000)( 23 +++= xxxxP

    , .

    2= , )(xP : 4080)( 23 ++= xxxxP 2.

    2. 83)2()4()( 22232 +++= xxxxP 22 2)23()( ++= xxxQ . .

    83)2()4()( 22232 +++= xxxxP 22 2)23()( ++= xxxQ , :

    =+= 08283 22 2= 4=

    === 0)2(022 22 0= 2= =+=+ 02232 22 1= 2=

    = 042 2= 2=

    , 2= .

  • .- .

    133

    3. 32)()()( 2223 +++= xxxP . )(xP

    i). ii). iii).

    i). 32)()()( 2223 +++= xxxP x . , :

    03 = 02 =+

    0)1( 2 = 0)1( =+ 0)1)(1( =+ 0)1( =+

    0= 1= 1= 0= 1=

    0= 1=

    ii). 32)()()( 2223 +++= xxxP , . ,

    03 = 0= 1= 1=

    02 =+ 0= 1=

    0322 = 1= 3=

    1=

    iii). 32)()()( 2223 +++= xxxP , :

    03 = 0= 1= 1=

    02 =+ 0= 1=

    0322 1 3

    0= .

    4. 652)( 23 += xxxxP .

  • .- .

    134

    i). )(xP 3=x ii). 2 ,1 ,1 )(xP

    i). 652)( 23 += xxxxP 3=x x -3.

    24615182761592276)3(5)3(2)3()3( 23 =++=++=+=P ii).

    . :

    06521615121)1( 23 =+=+=P 1 )(xP 0865216)1(5)1(2)1()1( 23 =++=+=P -1

    )(xP . 0610886)2(5)2(2)2()2( 23 =++=+=P -2

    )(xP ..

    5. 3)3()1()( 23 ++= xxxxP . , )(xP 2 1=x 6.

    3)3()1()( 23 ++= xxxxP 2 0)2( =P 032)3(22)1( 23 =++

    03)3(24)1(8 =++ 0326488 =+++

    856 =+ (1)

    3)3()1()( 23 ++= xxxxP 1=x 6

    6)1( =P 63)1()3()1()1()1( 23 =++ 63)3()1( =+++ 6331 =++++

    523 =+ (2)

  • .- .

    135

    (1) (2) :

    =+

    =+

    523856

    3= 2=

    6. xxxP 2)( 3 = i). )1()2()( = xPxPxQ ii). )(xQ iii). 2 1 )(xQ

    i). )2(2)2()2( 3 xxxP = xx 48 3 = ( xx 2 ) 1322133)1(2)1()1( 23233 ++=++== xxxxxxxxxxP ( 1 xx ) ,

    )1()2()( = xPxPxQ =++= )13(48 233 xxxxx 1348 233 += xxxxx

    1537)( 23 += xxxxQ

    ,

    ii). )(xQ 3 : 1 ,5 ,3 ,7 23 xxx iii). 2 )(xQ 0)2( =Q

    =+= 1)2(5)2(3)2(7)2( 23Q =++ 11043)8(7 04591256 =++= 2 )(xQ

    1 )(xQ 0)1( =Q

    =+= 1)1(5)1(3)1(7)1( 23Q 1513)1(7 ++ 077 =+= 1 )(xQ .

  • .- .

    136

    235 3

    25 78 1

    , = + 0 <

    235 3 78 1= + , 1 =

    234 3

    24 78

    0

    , = + 0 =

    234 3 78=

    ( )x ( ) 0x ( )x ( )x : ( ) ( ) ( ) ( )x x x x = + ,

    ( ) 0x = ( ( )x )

  • .- .

    137

    ( )x ( )x ( )x ( )x

    S. O. S. ( )x

    :

    i). 3 2( ) 2 2 3F x x x x= + 1x ii). ( )F x iii). ( ) 0F x =

    322 23 + xxx 1x 23 22 xx + 22x x4+ +3

    34 2 xx

    xx 44 2 +

    33 x

    33 + x

    0

    0 .

    , =)(xF 322 23 + xxx :

    )342()1(322 223 ++=+ xxxxxx

    = 0)(xF 0)342()1(0322 223 =++=+ xxxxxx 01=x

    0342 2 =++ xx 08(

  • .- .

    138

    :

    x a v vx a

    x a+ 2 1 2 1x a + ++

    !!!.

    () 5 ( x ( )P x ) ( ( ) : ( )P x x ) ( ( )x . ( ) ( ) ( )P x x x = ) ( x = ( )P x ) (

    ( ) 0P = )

    () ( )P x x ( )P =

    S. O. S. () () .

    1. 4 3( ) 3 2 2P x x x x= + + : i. 1x ( )P x ii. ( )P x 1x + 2 = .

    2. 4 3 2( ) 2 7P x x x x x = + + + . ( )P x 1x 3x + .

    3. 3 2( ) ( 2 3) 3 3P x x a x ax a = + + + + . , 1x + ( )P x ( ) : ( 2)P x x + 4 = .

    4. 4 3 2( ) 5 3 7 4P x x x x= + 2x + . 5. ( )P x 2x 1

    3+x -14. )(xP 62 + xx .

    1.

    4 3( ) 3 2 2P x x x x= + + . 1x ( )P x = 0)1(P =++ 0212113 34 = 62 3=

  • .- .

    139

    , ( )P x 1x + 2 = :

    2)1( =P =++ 22)1(2)1()1(3 34 =+ 0213 = 22 1=

    2. T 4 3 2( ) 2 7P x x x x x = + + + 1x , 3x + : 0)1( =P 0117121 234 =+++ 4=+ (1) 0)3( =P

    0)3()3(7)3(2)3( 234 =+++ 03635481 =+ 363 =+ 363 = (2)

    (1) (2) 128324

    3634 )(

    ===

    =

    =+ +

    8= 12=

    ..

    3. 3 2( ) ( 2 3) 3 3P x x a x ax a = + + + + . 1x + ( )P x 0)1( =P

    03)1(3)1)(32()1( 23 =++++ 4=+ (1) ( ) : ( 2)P x x + 4 = 4)2( =P

    =++++ 43)2(3)2)(32()2( 23 247 =+ (2)

    (1) (2)

    32

    310

    620206

    2474 )(

    ====

    =+

    =+

    32

    = 3

    10=

    4. 4 3 2( ) 5 3 7 4P x x x x= + 2x + : 4)2(7)2(3)2(5)2( 234 +== P = 447)8(3165 + =

    244282480 = 24)2( == P 5. )(xP :

    )(xP 2x 1 1)2(11 == P )(xP 3+x -14

    14)3(142 == P

  • .- .

    140

    )6(:)( 2 + xxxP 62 + xx 2 , += xx)( , .

    : +++= xxxxxP )()6()( 2 (1) (1) 2=x :

    +++= 2)2()622()2( 2P ++= 2)2(01 12 =+ (2) (1) 3=x :

    +++= )3()3()]6)3()3[()3( 2P += 3)3(014 143 =+

    (3)

    (2) (3)

    =+

    =+

    14312

    =

    =

    53

    , )(xP 62 + xx 53)( = xx .

  • .- .

    141

    HORNER

    Horner

    :

    ( )P x x ( )x + ( )P x .

    ( )P x x ( )x + .

    ( )P x x = ( x

    = ).

    Horner :

    : 3( 2 1) : ( 2)x x x+ + :

    1 : x . :

    3 32 1 2 1x x x x+ = + ( 2x + ) 2 : x

    . 3 3 22 1 2 0 1 1x x x x x+ = + +

    3 : Horner

    2,0,1, 1 -2 ( 2 0x + = 2x = ).

    4 :

    -2,

    .

    5 : .

    =0 x - x =

    . ( )

  • .- .

    142

    Horner ( )

    32 1x x+ 2x + 3 22 4x x 22 4 9x x +

    24 1x x +

    24 8x x+

    9 1x

    9 18x

    19

    2 0 1 -1 2=

    -4 8 -18

    2 -4 9 -19

    , 2( ) 2 4 9x x x = + 19 = . : 3 22 1 ( 2)(2 4 9) 19x x x x x+ = + +

    ..

    : 1912 3 =+ xx

    Horner :

    1912 3 =+ xx

    1919)942)(2( 2 =++ xxx 0)942)(2( 2 =++ xxx

    2=x 0942 2 =+ xx

    2=x ( 0567216

  • .- .

    143

    ( )f x ( )x .

    ( )x x = 1 ( )f x : x 2 Horner

    3 : ( )f x x ( )f =

    1. ( ( )P x ( )( )x x ( )P x ( )x ( )x

    2. ( )P x 2( )x ( ) 0P x = x = 2 x =

    ( ) 0P = ( ) 0 = ( )x ( )P x : ( )x .

    1. 4 2( ) 5 3P x x x x= + . ( ) : ( 2)P x x + .

    2. 3( ) 7 6f x x x= + I. ( ) : ( 3)f x x + II. ( ) 0f x =

    3.

  • .- .

    144

    I. )(xP ))(( xx )(xP ( )x ( )x

    II. +++= xxxxP 23 4)( . , )(xP 322 + xx ( 1).

    4. ++= 23)( xxxP . , )(xP 442 + xx ( 2).

    1. ( ) : ( 2)P x x + 4 2( ) 5 3P x x x x= + 350 234 ++ xxxx 2+x

    4x 32x 3x 22x x 3+

    32x 35 2 + xx

    23 42 xx ++

    32 + xx

    xx 22 ++

    33 x

    63 x

    9

    , ( ) : ( 2)P x x + 9= . 2 : Horner

    1 0 -5 1 -3 2=

    -2 4 2 -6

    1 -2 -1 3 -9

    , 9= 3

    954520163)2()2(5)2()2( 24 ===+== P

    2. ( ) : ( 3)f x x + 3( ) 7 6f x x x= +

  • .- .

    145

    670 23 ++ xxx 3+x

    3x 23x 2x x3 2+

    673 2 + xx

    23x+ x9+

    62 +x

    62 x

    0

    0= . , 3( ) 7 6f x x x= + )23)(3( 2 ++= xxx

    = 0)(xf =++ 0)23)(3( 2 xxx 03 =+x 0232 =+ xx

    3=x 1=x 2=x

    2 : Horner :

    1 0 -7 6 3=

    -3 9 -6

    1 -3 2 0

    0= . , 3( ) 7 6f x x x= + )23)(3( 2 ++= xxx

    = 0)(xf =++ 0)23)(3( 2 xxx 3=x 1=x 2=x

    3. I. : )(xP ))(( xx .

    )(x : )())(()( xxxxP = (1) (1):

    =x 0)()()(0)( == PP =x 0)()(0)()( == PP

    , )(xP )( x )( x

  • .- .

    146

    : )(xP )( x )( x . , 0)( =P 0)( =P . )(xP

    ))(( xx . ))(( xx 2 , : += xx)( , . , :

    ++= xxxxxP )())(()( (2) (2)

    =x : 0)()(0)( =+++= P (3) =x : 0)(0)()( =+++= P (4)

    (3) (4)

    00)(0)( ===++

    (3) 0= 0= . , )(xP ))(( xx , )(xP

    ))(( xx .

    . +++= xxxxP 23 4)( 322 + xx )3)(1( += xx . ,

    )(xP )1( x 5011410)1( 23 =+=+++= P (1)

    )(xP )3( +x 930)3()3(4)3(0)3( 23 =+=+++= P (2)

    (1) (2)

    =+

    =+

    935

    =

    =

    61

    4. 22 )2(44 =+ xxx . , ++= 23)( xxxP 2)2( x , )(xP )2( x )(xP )2( x )2( x .

    )2(:)( xxP

  • .- .

    147

    1 0 2=

    2 42 + 84 +

    1 2+

    42 +

    84 ++

    42)2()( 2 ++++= xxx 84 ++= . , ,

    0840 =++= (1) , 42)2()( 2 ++++= xxx )2( x :

    042)2(20)2( 2 =++++= ax 042424 =++++ a 124 = 3=

    , (1) : =++ 08)3(4 4=

  • .- .

    148

    - :

    11 1 0... 0

    v v

    v va x a x a x a

    + + + + = , 0va

    . . 6 23 5 6 0x x + = 6

    35 2 1 0x x + = 3

    25 2 3 0x x+ =

    x =

    , ( ) 0P = .

    . . 3 6 5 0x x + = 1x =

    3( ) 6 5P x x x= + ( 3(1) 1 6 1 5 0P = + = )

    ,

    .

    1 2( ) 0 ( ) ( ) ... ( ) 0P x P x P x P = = 1

    2

    ( ) 0( ) 0

    ( ) 0

    P xP x

    P x

    = = =

    3 1 2

  • .- .

    149

    11 1 0( ) ...v vv vP x a x a x a x a= + + + +

    ( ) 0P x =

    x = .

    x =

    0a .

    x = ( ) 0a .

    i). ( ) .

    .

    ii). .

    . . += 22x

    .

    iii). .

    . . 5 4( ) 3 2 5 3 3f x x x x= + .

    :

    1. : 01892 23 =+ xxx

    01892 23 =+ xxx 0)2(9)2(2 =++ xxx 0)9)(2( 2 =+ xx 0)3)(3)(2( =++ xxx 02 =+x 03 =x 03 =+x 2=x 3=x

    3=x

    ..

  • .- .

    150

    2. : 041583 23 =++ xxx

    041583 23 =++ xxx : 4 : 1 , 2 , 4

    Horner

    41583)( 23 ++= xxxxP . ,

    3 8 -15 4 1=

    3 11 -4

    3 11 -4 0

    , 0)1( =P 1 )(xP

    3 8 -15 4 1=

    -3 -5 20

    3 5 -20 24

    , 024)1( =P -1 )(xP

    3 8 -15 4 2=

    6 28 26

    3 14 13 30

    , 030)2( =P 2 )(xP

    3 8 -15 4 2=

    -6 -4 28

    3 2 -19 32

    , 032)2( =P -2 )(xP

    3 8 -15 4 4=

  • .- .

    151

    12 80 280

    3 20 65 284

    , 0280)4( =P 4 )(xP

    3 8 -15 4 4=

    -12 16 -4

    3 -4 1 0

    , 0)4( =P -4 )(xP , : 4,1 .

    [2 1 )(xP )4113)(1()( 2 += xxxxP

    041583 23 =++ xxx 0)4113)(1( 2 =+ xxx 01=x

    04113 2 =+ xx 1=x 4=x 31

    =x ]

    ..

    3. : 0234 =+ xx

    1 , 2

    Horner

    23)( 4 += xxxP . ,

    1 0 0 3 -2 1=

    1 1 1 4

    1 1 1 4 2

    , 02)1( =P 1 )(xP

    1 0 0 3 -2 1=

    -1 1 -1 -2

  • .- .

    152

    1 -1 1 2 -4

    , 04)1( =P 1 )(xP 1 0 0 3 2 2=

    2 4 8 22

    1 2 4 11 24

    , 24)2( =P 2 )(xP 1 0 0 3 2 2=

    -2 4 -8 10

    1 -2 4 -5 12

    , 012)2( =P -2 )(xP , 0234 =+ xx .

  • .- .

    153

    ( ) ( )A x B x> , ( )A x , ( )B x . ( ) ( )A x B x> ( ) ( ) 0A x B x >

    ( ) 0P x > 1 2( ) ( ) ... ( ) 0P x P x P x > (1 2 ) .

    !! 2[ ( )] 0A x > x , 2 1[ ( )]A x + ( )A x .

    :

    1. 3 23 5 9x x x+

    2. 4 3 23 9 9 2 0x x x x +

    3. 2

    24 2

    1 1 1x

    x x x

    +

    4. 2 3 1 1x x+ + >

    1. 3 23 5 9x x x+ 0935 23 ++ xxx .

    0935 23 =++ xxx 1 , 3 , 9 -1 Horner :

    1 -5 3 9 1=

    -1 6 -9

    1 -6 9 0

    )96)(1(935 223 ++=++ xxxxxx : 0935 23 ++ xxx 0)96)(1( 2 ++ xxx + 0)3)(1( 2xx 1x

    xx 0)3( 2

  • .- .

    154

    2. 4 3 23 9 9 2 0x x x x +

    02993 234 =+ xxxx 1 , 2 . 1

    Horner :

    3 -1 -9 9 -2 1=

    3 2 -7 2

    3 2 -7 2 0

    )2723)(1(2993 23234 ++=+ xxxxxxxx Horner 2723 23 ++ xxx . : 1 , 2 .

    1

    3 2 -7 2 1=

    3 5 -2

    3 5 -2 0

    , )253)(1(2723 223 +=++ xxxxxx :

    4 3 23 9 9 2 0x x x x + ++ 0)2723)(1( 23 xxxx + 0)253)(1)(1( 2 xxxx + 0)253()1( 22 xxx [ xx 0)1( 2 ]

    0253 2 + xx 049242542 >=+==

    =

    =

    31

    2

    675

    2,1x

    :

    x

    2 31

    +

    253 2 + xx + - +

    , 0253 2 + xx 2x 31

    x :

    4 3 23 9 9 2 0x x x x +

  • .- .

    155

    3. 2

    24 2

    1 1 1x

    x x x

    + . . . = 1)1)(1( 2 =+ xxx

    012x 1x 1x . 2

    24 2

    1 1 1x

    x x x

    + 0

    12

    14

    1 22

    + xxx

    x 0

    12

    1)1(4

    1)1(

    222

    2

    +

    xx

    x

    x

    xx

    01

    2442

    23

    x

    xxx 0

    164

    2

    23

    x

    xxx 0)1)(64( 223 xxxx

    6423 xxx 1 , 2 , 3 , 6

    3 6423 xxx . Horner

    :

    1 -1 -4 -6 3=

    3 6 6

    1 2 2 0

    6423 xxx )22)(3( 2 ++= xxx : 0)1)(64( 223 xxxx 0)1)(22)(3( 22 ++ xxxx

    222 ++ xx 04

  • .- .

    156

    2 3 1 1x x+ + > 1132 ++>+ xx 22 )11()32( ++>+ xx

    112132 ++++>+ xxx 112 + 3>x

  • .- .

    157

    (1)

    .

    :

    1. 2 2 2 2( 5 7) 4( 5 5) 5 6 3x x x x x x + + + + + = 2. 2 2 2( 2 1) 3( 2 3) 14 0x x x x+ + + + = 3. 10 533 32 0x x + =

    4. 6 35 6 0x x + =

    [ (3) (4) : 2 0v vax x + + = . vx = ]

    1. 2 2 2 2( 5 7) 4( 5 5) 5 6 3x x x x x x + + + + + = (1) xx 52 = (1) :

    36)5(4)7( 2 =+++++ 0920449142 =++++++ 078192 =++ 13= 6= . ,

    13= : = 1352 xx 01352 =+ xx ( 0

  • .- .

    158

    3. 10 533 32 0x x + = (1) : =5x 22510 )( == xx (1) : 032332 =+ 1= 32=

    1= : 15 =x 1=x

    32= : 325 =x 5 32=x 2=x .

    .

    4. 6 35 6 0x x + = (1) =3x 2236 )( == xx (1) : 0652 =+ 2= 3= .

    2= : 23 =x 3 2=x

    3= : 33 =x 3 3=x

  • .- .

    159

    (2)

    . . 2

    23 2 7

    1 5 1x x

    x x

    ++ =

    2 2( 3) 5( 3) 7

    5 3 2x x x+

    + =

    1. . . . 0 .

    2. . . . 3. !!!

    .

    : :

    i). 2 2

    23 1 2 3 2

    1x x x

    x x x x

    + =

    ii). 2 22 1 0

    2 1 2x

    x x x+ =

    i). 2 2

    23 1 2 3 2

    1x x x

    x x x x

    + =

    x

    xx

    xxx

    x 23)1(

    2113 22 +

    =

    )1(... = xx : 0)1( xx 0x 1x , :

    x

    xxxx

    xxxx

    x

    xxx

    23)1()1(2)1(

    113)1(

    22 +=

    )23)(1(2)13( 22 += xxxxx 232323 2233 ++= xxxxxxx 0642 23 =+ xxx 032 23 =+ xxx 0)32( 2 =+ xxx 0=x 0322 =+ xx

    0=x () 1=x () 3=x . ..

  • .- .

    160

    ii). 2 22 1 0

    2 1 2x

    x x x+ =

    0)12(

    112

    22 =

    +xxx

    x

    )12(... = xx : 0)12( xx 0x 012 x

    21

    x . , :

    0)12(1)12(

    122)12()12( 2 =

    +

    xxxx

    xxxxxx

    0122 34 =+ xxx 0)1()1(2 33 =++ xxx 0)1)(12( 3 =+ xx

    12 =x 013 =+x

    21

    =x () 13 =x 1=x

  • .- .

    161

    (3)

    .

    . . 2 1 2x x + =

    2 2 3 13x x +

    ,

    ( ) .

    !! .

    !! .

    : :

    1. 42 =++ xx

    2. 1413 =++ xx

    3. =+ xx 12

    4. 0233 2 = xx

    5. 02410152 =+ xxx

    1. 42 =++ xx (1) , 02 +x 2 x .

    42 =++ xx xx =+ 42 =+ 22 )4()2( xx

    28162 xxx +=+ =+ 01492 xx 2=x 7=x

  • .- .

    162

    2=x (1) : 444224244222 ==+=+=++

    7=x (1) : 4104734794727 ==+=+=++ , 7=x , 2=x .

    2. 1413 =++ xx :

    3113013 + xxx

    404 + xx

    31

    x . :

    1413 =++ xx 1413 ++=+ xx (1) (1) . :

    1413 ++=+ xx ++=+ 22 )14()13( xx

    142)4(13 2 ++++=+ xxx 142413 ++++=+ xxx

    4242 += xx 42 += xx (2) (2) 04 +x 202 xx .

    31

    x . ,

    2x . :

    42 += xx 22 )4()2( += xx 4442 +=+ xxx 052 = xx = 0)5(xx 0=x 5=x .

    0=x 2x .

    5=x .

    3. . :

    012 +x x .

  • .- .

    163

    0 x x ( 2 1 ) :

    =+ xx 12 1221)()1( 2222222 =+=+=+ xxxxxx (1)

    0= (1) 10 = x

    0 (1)

    2

    12 =x

    x

    o

    2

    12

    02

    12

    0

    221 22

    0

    212

    + 0

    212

    0

    .

    4. 0233 2 = xx (1) 0x . 3 x=

    : 2233 2 )( == xx (1) : 022 = 1= 2=

    11 3 == x

    822 3 === xx

    5. 02410152 =+ xxx (1) 0x . x= : 22)( == xx 442 )( == xx (2) :

    0241015 24 =+ (2) 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 . 1 ,

    1 0 -15 -10 24 1=

    1 1 -14 -24

    1 1 -14 -24 0

  • .- .

    164

    (2) : 0241015 24 =+ 0)2414)(1( 23 =+ (3) , 241423 + 2

    Horner

    1 1 -14 -24 2=

    -2 2 24

    1 -1 -12 0

    )12)(2(2414 223 +=+ , (3) :

    =+ 0)2414)(1( 23 0)12)(2)(1( 2 =+ 01= 02 =+ 0122 = 1= 2= 3= 4=

    :

    1= : 1=x 1= x

    2= : 2=x

    3= : 3=x

    4= : 164 == xx .

  • .- .

    165

    1.

    I. 53)1(3)( 22 += xxxP .

    .

    .

    .

    .

    II. )2()2()4()( 22 ++= xxxP , :

    . -2 . -1 . 0 . 1 . 2

    III. 8)1()1()1()( 232 ++++= xxxxP

    . -1 . 0 . 1 . . IV. 1)23()1()( 235 +++= xxxP

    . -1 . 0 . 1 . -5 . 5

    V. 8)1()1()( 5 ++= xxxP , , )1()1()1()1()( 2233 ++= xxxxq

    . 3 . 2 . 1 .

    .

    VI. 5)( 3 += xxxP ++= 5)( 23 xxxQ ,

    . -1 . 0 . 1 . 5 . -5

    VII. 1)32()( 21 ++= + xxxxP 1(3)( 21998 ++= xxxxq

  • .- .

    166

    . 1 . -1 . 0 . 1998 . VIII. 011 ...)( +++= xxxP .

    0 :

    . 00 > . 00 . 1998> . 1997= . 1997= .

    XII. )(xP : 852)()1( 462 += xxxxPx )(xP :

    . 3 . 4 . 5 . 6 .

  • .- .

    167

    2.

    4)2()2()( 223 +++= xxxP .

    3. 3)62()2()( 2 ++++= xxxP .

    4. ,,

    2)()( 2 += xxxP +++= xxxQ 4)()( 2

    5. 27839)( 23 += xxxxP : )93()3(3)( 223 ++++ xxxxxx

    6. )(xK 4432)( 234 ++= xxxxxP

    7. xxxxP +++= 325 )23()1()(

    .21

    8. 2)1()( 2 ++= xxxP -1 xxxxK )1(4)( 223 ++= . ;

    9. )(xP : 3223)()1( 23452 ++=+ xxxxxxPx

    10. .52)( 2 ++= xxxP 13)1( =P .

    11. ,

    xxxP )102()2()( 2 ++= .

  • .- .

    168

    12. 32)94()94()( 2233 ++= xxxP .

    13. )(xP 269)23( 2 += xxxP )(xP .

    14. )(xP 1 )(xQ )23(3)()12()( 2 = xPxPxxxQ

    i. )(xQ ii. )53( xP 2.

    15. I. )(xP -2 . 2x . 2+x . 12 +x . 12 x . x2

    II. )(xP 2 -1

    . 2x

    1x

    . 2+x

    1x

    . 2+x

    1+x

    . 2x

    1+x

    . 12 x

    12 +x

    III. )(xP 12 +x )(xP

    . 2 . -2 . 1 .

    21

    . 21

    IV. 5 , :

    . 2

    . 2

  • .- .

    169

    . 2

    . 3

    . 3

    V. , 3 :

    . 3

    . 2

    . 2

    . 2

    VI. 3)( 248 +++= xxxxP x . :

    . 0> . 0

  • .- .

    170

    . 72 24 + xxx

    . 92 246 + xxx

    . 52 68 ++ xx

    X. )(xP ( ) 3)( x . )(:)( xxP

    . -3 . -1 . 0 . 1 . 3

    16.

    i. )1(:)922( 2235 + xxxx ii. )5(:)1527( 334 ++ xxxx iii. )2(:)43( 233 + xxx iv. )(:]9)79(7[ 223 ++ xxx

    17. )(xf 12 +x 13 x

    52 +x .

    18. ,

    1)( 4 += xxP ++ xx 2 0.

    19. 4)( 23 +++= xxxxf 2x 8)1( =f , .

    20. ++= xxxxP 132)( 23 . )(xP 62 xx , .

    21. )14(3)13(2)( 222 +++= xxxP . )2(:)( +xxP .

  • .- .

    171

    22. )(xP 5x )32( xP 4x

    23. Horner .

    i. )2(:)652( 23 + xxxx ii. )1(:)362( 245 +++ xxxx iii. )(:]3)62(6[ 223 ++ xxx , iv. )12(:)24( 256 + xxxx

    v. )1(:)21( 2325 ++ xxxx ,

    24. ,

    5)1()( 23 ++= xxxxP )2)(1( + xx

    25. ,

    10)3()( 23 +++= xxxxP 2)2( x .

    26. )(xP )2( x 10 )3( +x 5. )(xP

    )3)(2( + xx

    27. )(xP )2( +x 3 2 4 3x x + 72 +x .

    )34)(2(:)( 2 ++ xxxxP .

  • .- .

    172

    28.

    i. 0652 =+ xx

    ii. 022 23 =+ xxx

    iii. 0223 34 =+ xxx

    iv. 073 24 =++ xx

    v. 032 3 =++ xx

    29. xx' .

    i. 42)2()( 2 += xxxf ii. xxxg 3)( 3 = iii. 23)( 24 += xxxh iv. 45)( 5 += xxxK v. 5)1()( 24 +++= xxx

    30.

    xx' .

    i. 23)( 23 ++= xxxxf ii. xxxg 5)( 2 = iii. 423 )1()( xxxh += iv. 2)1()( 2 = xxK v. 2)( 24 += xxx

    31. 023 23 =++ xxx , :

    . -1 . 1 . -2 . 2 . 3

    32. 023 =++ xxx , , 3

    :

    . 6 . 10 . 12 . 15 . 18

  • .- .

    173

    33. += xx3 ,

    . 1 . -1 .

    32

    . 4 .

    45

    34. xx 25 = ,

    . ),0( + . )0,( . ),5[ + . ]5,( . ]5,0[

    35. 53 =+ xx ,

    .

    . 2 . 3 . 4 . 5 . 6

    36. ( ) : i. 783 + xx

    ii. 0265 234 =++ xxxx

    iii. 02)2( 3 =++ xxxx iv. 0)4(3)4)(1( 4 =++ xxx v. 012872 234 =++ xxxx

    37. 0195 2 =+ xx .

    38. , : 01)1(28 2 =+ xx .

    39.

    i. 022 23 >+ xxx

    ii. 953 23 + xxx

    iii. 02993 234 + xxxx

    iv. 463 34 + xxx

    v. xxxxx 176)12(10)43( 24 +

  • .- .

    174

    40. 01235 =++ xxxx .

    , .

    41.

    i. 089 36 =+ xx

    ii. 08)23(9)23( 3262 =+++ xxxx iii. 04)2(3)2( 48 =++ xx iv. 04)1211(3)1211( 2343 =++ xxxx

    v. 06)1(5)1( 2 =+x

    x

    x

    x

    42. 045 =+++ xxx . ,

    -1 2 ( ). .

    43. 01123 =+ xx

    : )3 ,4( , )1 ,0( , )4 ,3( .

    44.

    i. 1

    312

    1 2 =

    ++

    + xx

    x

    x

    x

    ii. 22

    242

    xx

    xx=

    +

    45.

    i. 12

    423