26
第第第 第第第第第第第第第 5.1 第第第第第第第 5.1.1 LM386 第第第第第第第 1 LM386 第第第 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 2 1 + - R1 50K T1 T2 R2 R3 15K 15K R4 R5 150 1.35K 15K R6 R7 50K T3 T4 T5 T6 T7 T8 T9 T10 V+ 6 4 1 8 7 2 3 (a) LM386地 地地 地地 1 2 3 4 5 6 7 8 V+ 地地 (b) LM386地 地地 5 地地

第五讲 模拟集成电路及应用

  • Upload
    vahe

  • View
    102

  • Download
    5

Embed Size (px)

DESCRIPTION

退出. 第五讲 模拟集成电路及应用. 5.1 集成功率放大器. 5.1.1 LM386 集成功率放大器. 1 . LM386 的特点. 退出. 它是 8 脚 DIP 封装,消耗的静态电流约为 4mA ,是应用电池供电的理想器件。 该集成功率放大器同时还提供电压增益放大,其电压增益通过外部连接的变化可在 20 ~ 200 范围内调节。 其供电电源电压范围为 4 ~ 15V ,在 8W 负载下,最大输出功率为 325mW ,内部没有过载保护电路。 功率放大器的输入阻抗为 50k ,频带宽度 300kHz 。. - PowerPoint PPT Presentation

Citation preview

Page 1: 第五讲  模拟集成电路及应用

第五讲 模拟集成电路及应用5.1 集成功率放大器

5.1.1 LM386 集成功率放大器

1 . LM386 的特点

32

13

21

32

13

21

32

1

32

1

32

1

32

1

32

1

12

12

12

1 21 2 1 2

12

12

12 3

21

+-

R 1

50K

T 1

T 2

R 2

R 3

15K

15KR 4 R 5

150 1 .35K 15K

R 6

R 7

50K

T 3

T 4

T 5 T 6

T 7

T 8

T 9

T 10

V +6

4

187

2 3

( a) LM386内 部 电 路 图

1 2 3 4

5678

增 益 反 相输 入

同 相输 入

输 出V+旁 路增 益

( b) LM386管 脚 排 列 图

5

退出

Page 2: 第五讲  模拟集成电路及应用

它是 8 脚 DIP 封装,消耗的静态电流约为 4mA ,是应用电池供电的理想器件。 该集成功率放大器同时还提供电压增益放大,其电压增益通过外部连接的变化可在 20 ~ 200 范围内调节。 其供电电源电压范围为 4 ~ 15V ,在 8W 负载下,最大输出功率为 325mW ,内部没有过载保护电路。 功率放大器的输入阻抗为 50k ,频带宽度 300kHz 。

2 . LM386 的典型应用 LM386 使用非常方便。它的电压增益近似等于 2 倍的 1 脚和 5 脚电阻值除以 T1 和 T3 发射极间的电阻(图 3.3.1 中为 R4+R5 )。所以图 3.3.2 是由 LM386 组成的最小增益功率放大器,总的电压增益为:

20k35.1k15.0

k152

62

45

RR

R

退出

Page 3: 第五讲  模拟集成电路及应用

C2 是交流耦合电容,将功率放大器的输出交流送到负载上,输入信号通过 Rw 接到 LM386 的同相端。 C1 电容是退耦电容, R1-C3 网络起到消除高频自激振荡作用。

V C C _ C I R C L E

V C C _ C I R C L E

12

12

+

-

1

65

147

2

V + (4¡« 12V )

L M 386+

C 1

100n

C 2

220uF

8 ¦ ¸Ñ ïÉ ùÆ ÷C 3

R 1

47n

10

R W

10K

V i

2

3

6

4

5

退出

Page 4: 第五讲  模拟集成电路及应用

若要得到最大增益的功率放大器电路,可采用图 3.3.3 电路。在该电路中, LM386 的 1 脚和 8 脚之间接入一电解电容器,则该电路的电压增益将变的最大:

200k15.0

k1522

4

6 R

RAV

V C C _ C I R C L E

V C C _ C I R C L E +

-

1

65

14

7

12

12

2

V + (4 ¡« 12V )

L M 386+

C 1

100n

C 2

220uF

8 ¦ ¸Ñ ïÉ ùÆ ÷C 3

R 1

47n

10

R W

10K

V i

2

3

6

4

5

+

C 4

10uF

1 8

退出

Page 5: 第五讲  模拟集成电路及应用

电路的其他元件的作用与图 3.3.2 作用一样。若要得到任意增益的功率放大器,可采用图 3.3.4 所示电路。该电路的电压增益为:

254

6

//2

RRR

RAV

在给定参数下,该功率放大器的电压增益为 50 。V C C _ C I R C L E

V C C _ C I R C L E +

-

1

65

14

7

12

12

2

1 2

V + (4 ¡« 1 2 V )

L M 3 86+

C 1

1 0 0 n

C 2

2 2 0 u F

8 ¦ ¸Ñ ïÉ ù Æ ÷C 3

R 1

4 7 n

1 0

R W

1 0 K

V i

2

3

6

4

5

1 0 u F

1 8

+C 4 R 2 1 .2 K

退出

Page 6: 第五讲  模拟集成电路及应用

5.1.2 高功率集成功率放大器 TDA2006 TDA2006 集成功率放大器是一种内部具有短路保护和过热保护功能的大功率音频功率放大器集成电路。它的电路结构紧凑,引出脚仅有 5 只,补偿电容全部在内部,外围元件少,使用方便。不仅在录音机、组合音响等家电设备中采用,而且在自动控制装置中也广泛使用 .

1 . TDA2006 的性能参数

T D A 2 0 0 6

21 3 4 5

音频功率放大器集成电路 TDA2006 采用 5 脚单边双列直插式封装结构,图 3.3.5是其外型和管脚排列图。 1 脚是信号输入端子; 2 脚是负反馈输入端子; 3 脚是整个集成电路的接地端子,在作双电源使用时,即是负电源( -VCC )端子; 4 脚是功率放大器的输出端子; 5 脚是整个集成电路的正电源( +VCC )端子。 退出

Page 7: 第五讲  模拟集成电路及应用

表 3-5 TDA2006 的性能参数

参数名称 符号 单位 测 试 条 件 规 范

最小 典型 最大

电源电压 VCC V ±6V ±15V

静态电流 ICC mA VCC=±15V 40 80

输出功率P0 W RL=4 , f=1kHz,THD=10% 12

RL=8, f=1kHz,THD=10% 6 8

总谐波失真率 THD % P0=8W, RL=4, f=1kHz 0.2

频率响应 BW Hz P0=8W, RL=4 40~ 140000

输入阻抗 Ri MΩ f=1kHz 0.5 5

电压增益(开环) AV dB f=1kHz 75

电压增益(闭环) AV dB f=1kHz 29.5 30 30.5

输入噪声电压 eN μV BW=22Hz~ 22kHz, RL=4 3

退出

Page 8: 第五讲  模拟集成电路及应用

2 . TDA2006 音频集成功率放大器的典型应用

V C C _ C I R C L E

V C C _ C I R C L E

V C C _ C I R C L E +

-

3

26

18

1 2

12

12

12

12

1 2

+

+

+

+

C 1

C 2

C 3

C 4 C 5

R L

R 1R 2

R 3 2

1

3

45

1N 4001¡Á 2

+ V cc

-V cc

R 4

2 .2uF

100uF

100uF0 .22uF

22uF

22K22K

680

图 3.3.6 电路是 TDA2006 集成电路组成的双电源供电的音频功率放大器,该电路应用于具有正、负双电源供电的音响设备。音频信号经输入耦合电容 C1 送到 TDA2006 的同相输入端( 1 脚),功率放大后的音频信号由 TDA2006 的 4 脚输出。由于采用了正、负对称的双电源供电,故输出端子( 4 脚)的电位等于零,因此电路中省掉了大容量的输出电容。 电阻 R1 、 R2 和电容器 C2 构成负反馈网络,其闭环电压增益:

4.3368.0

2211

2

1Vf

R

RA 退出

Page 9: 第五讲  模拟集成电路及应用

电阻 R4 和电容器 C5 是校正网络,用来改善音响效果。两只二极管是 TDA2006 内大功率输出管的外接保护二极管。

3. 单电源供电 在中、小型收、录音机等音响设备中的电源设置往往仅有一组电源,这时可采用图 3.3.7 所示的 TDA2006 工作在单电源下的典型应用电路。音频信号经输入耦合电容 C1 输入 TDA2006 的输入端,功率放大后的音频信号经输出电容 C5 送到负载 RL 扬声器。电阻 R1 、 R2 和电容 C2 构成负反馈网络,其电路的闭环电压放大倍数:

9.327.415011 21Vf RRA

电阻 R6 和电容 C6 同样是用以改善音响效果的校正网络。电阻 R4 、 R5 、 R3 和电容 C7 用来为 TDA2006 设置合适的静态工作点的,使 1 脚在静态时获得电位近似为 1/2VCC 。

退出

Page 10: 第五讲  模拟集成电路及应用

V C C _ C I R C L E

V C C _ C I R C L E +

-

3

26

181

2

12

1 2

12

1 2

12

12

1 2+

+

+

+

C 1

C 2

C 3

C 4R L

R 1R 2

2

1

3

45

1N 4001¡Á 2

+ V cc

R 4

2 .2uF

100uF

100uF0 .22uF

22uF

C 4

100pF

R 3

R 4

R 5

100K

100K

100K

+

C 7

22uF

C 6

+

C 5

2200uFT D A 2006

150K

4 .7K

1

退出

Page 11: 第五讲  模拟集成电路及应用

5.2 线性集成稳压器

5.2.1 三端固定集成稳压器

1 .三端固定集成稳压器的特点

三端固定集成稳压器包含 7800 和 7900 两大系列, 7800 系列是三端固定正输出稳压器, 7900 系列是三端固定负输出稳压器。它们的最大特点是稳压性能良好,外围元件简单,安装调试方便,价格低廉,现已成为集成稳压器的主流产品。 7800 系列按输出电压分有 5V 、 6V 、 9V 、 12V 、 15V 、 18V 、 24V 等品种;按输出电流大小分有 0.1A 、 0.5A 、 1.5A 、 3A 、 5A 、 10A 等产品;具体型号及电流大小见表 3-6 。例如型号为 7805 的三端集成稳压器,表示输出电压为 5V ,输出电流可达 1.5A 。注意所标注的输出电流是要求稳压器在加入足够大的散热器条件下得到的。同理 7900 系列的三端稳压器也有 -5V ~ -24V七种输出电压,输出电流有 0.1A 、 0.5A 、 1.5A 三种规格,具体型号见表 3-7 。

退出

Page 12: 第五讲  模拟集成电路及应用

7800 系列属于正压输出,即输出端对公共端的电压为正。根据集成稳压器本身功耗的大小,其封装形式分为 TO-220塑料封装和 TO-3金属壳封装,二者的最大功耗分别为 10W 和 20W (加散热器)。管脚排列如图 3.4.1(a) 所示。 UI 为输入端, UO 为输出端, GND 是公共端(地)。三者的电位分布如下: UI> UO

> UGND(0V) 。最小输入—输出电压差为 2V ,为可靠起见,一般应选 4 ~ 6V 。最高输入电压为 35V 。

C W 78¡Á ¡Á C W 79¡Á ¡Á

输 入 输 入地 地输 出 输 出

( a) ( b)

退出

Page 13: 第五讲  模拟集成电路及应用

7900 系列属于负电压输出,输出端对公共端呈负电压。 7900 与7800 的外形相同,但管脚排列顺序不同,如图 3.4.1(b) 所示。 7900 的电位分布为: UGND(0V)> -UO> -UI 。另外在使用 7800 与 7

900 时要注意,采用 TO-3 封装的 7800 系列集成电路,其金属外壳为地端;而同样封装的 7900 系列的稳压器,金属外壳是负电压输入端。因此,在由二者构成多路稳压电源时若将 7800 的外壳接印刷电路板的公共地, 7900 的外壳及散热器就必须与印刷电路板的公共地绝缘,否则会造成电源短路。2 .应用中的几个注意问题

( 1 )改善稳压器工作稳定性和瞬变响应的措施三端固定集成稳压器的典型应用电路如图 3.4.2 所示。图 3.4.2 ( a )适合 7800 系列, UI 、 UO均是正值;图 3.4.2 ( b )适合 7900 系列, UI

、 UO均是负值;其中 UI 是整流滤波电路的输出电压。在靠近三端集成稳压器输入、输出端处,一般要接入 C1=0.33F 和 C2=0.1F 电容,其目的是使稳压器在整个输入电压和输出电流变化范围内,提高其工作稳定性和改善瞬变响应。为了获得最佳的效果,电容器应选用频率特性好的陶瓷电容或胆电容为宜。另外为了进一步减小输出电压的纹波,一般在集成稳压器的输出端并入一几百 F 的电解电容。 退出

Page 14: 第五讲  模拟集成电路及应用

V C C _ C I R C L E

V C C _ C I R C L EV C C _ C I R C L EV C C _ C I R C L E

1 212

C W 7 8 0 0

D

C 1

U i

C 2 C 0

U 0C W 7 9 0 0

-U i -U 0

C 1 C 2 C 0

D

+ +

(b)(a)

0 .3 3 ¦ ÌF0 .3 3 ¦ ÌF0 .1 ¦ ÌF 0 .1 ¦ ÌF

( 2 )确保不毁坏器件的措施三端固定集成稳压器内部具有完善的保护电路,一旦输出发生过载或短路,可自动限制器件内部的结温不超过额定值。但若器件使用条件超出其规定的最大限制范围或应用电路设计处理不当,也是要损坏器件的。例如当输出端接比较大电容时( CO> 25F ),一旦稳压器的输入端出现短路,输出端电容器上储存的电荷将通过集成稳压器内部调整管的发射极—基极PN 结泄放电荷,因大容量电容器释放能量比较大,故也可能造成集成稳压器坏。为防止这一点,一般在稳压器的输入和输出之间跨接一个二极管(见图 3.4.2 ),稳压器正常工作时,该二极管处于截止状态,当输入端突然短路时,二极管为输出电容器 CO 提供泄放通路。 退出

Page 15: 第五讲  模拟集成电路及应用

( 3 )稳压器输入电压值的确定 集成稳压器的输入电压虽然受到最大输入电压的限制,但为了使稳压器工作在最佳状态及获得理想的稳压指标,该输入电压也有最小值的要求。输入电压 UI 的确定,应考虑如下因素:稳压器输出电压 UO ;稳压器输入和输出之间的最小压差 (UI- UO)min

;稳压器输入电压的纹波电压 URIP ,一般取 UO 、 (UI- UO)min

之和的 10% ;电网电压的波动引起的输入电压的变化 ,一般取 UO 、 (UI- UO)min 、 URIP 之和的 10% 。对于集成三端稳压器,具有较好的稳压输出特性。例如对于输出为 5V 的集成稳压器,其最小输出电压 UI 为:

IUVUU 10~2)( OI

)(V5.877.07.025)( IRIPmin0I0Imin UUUUUU

退出

Page 16: 第五讲  模拟集成电路及应用

5.2.2 三端可调集成稳压器

它分为 CW317( 正电压输出 ) 和 CW337( 负电压输出 ) 两大系列,每个系列又有 100mA 、 0.5A 、 1.5A 、 3A… 等品种,应用十分方便。就 CW317 系列与 CW7800 系列产品相比,在同样的使用条件下,静态工作电流 IQ从几十mA 下降到 50A ,电压调整率SV 由 0.1%/V达到 0.02%/V ,电流调整率 SI 从 0.8% 提高到 0.1

% 。三端可调集成稳压器的产品分类见表 3-8 所示。

CW117/217/317

CW137/237/337

ADJ U0 Ui ADJ -Ui -U0

退出

Page 17: 第五讲  模拟集成电路及应用

CW317 、 CW337 系列三端可调稳压器使用非常方便,只要在输出端上外接两个电阻,即可获得所要求的输出电压值。它们的标准应用电路如图 3.4.4 所示,其中图 3.4.4(a) 是 CW317 系列正电压输出的标准电路;图 3.4.4(b) 是 CW337 系列负电压输出的标准电路。

V C C _ C I R C L E

V C C _ C I R C L E

V C C _ C I R C L E

V C C _ C I R C L E

C 1

C 2

R 11

21

2

D 112

D 21

2

2 2

D 2

12

D 11 2

12

R 1

12

C 2

C 1

U i

2

1

3L M 317

1N 4007

1N 4007C 3

+

+

120 ¦ ¸

R 2

U 0

1

1N 4007

1N 4007C 3

120 ¦ ¸

R 2

-U iL M 337

3 2

+

+

-U 0

0 .1 ¦ ÌF 0 .1 ¦ ÌF

10 ¦ ÌF 10 ¦ ÌF

10 ¦ ÌF 10 ¦ ÌF

(a) (b)

)1(25.11050)1(25.11

22

6

1

20 R

RR

R

RU

退出

Page 18: 第五讲  模拟集成电路及应用

在空载情况下,为了给 CW317 的内部电路提供回路,并保证输出电压的稳定,电阻 R1 不能选的过大,一般选择 R1=100 ~ 1

20 。调整端上对地的电容器 C2 用于旁路电阻 R2 上的纹波电压,改善稳压器输出的纹波抑制特性。一般 C2 的取值在 10F左右。

5.2.3 集成稳压器典型应用实例1 .正、负对称固定输出的稳压电源利用 CW7815 和 CW7915 集成稳压器,可以非常方便地组成 ±15V输出、电流 1.5A 的稳压电源,其电路如图 3.4.5 所示。该电源仅用了一组整流电路,节约了成本。

退出

Page 19: 第五讲  模拟集成电路及应用

2 .从零伏开始连续可调的稳压电源由于 CW317 集成稳压器的基准电压是 1.25V ,且该电压在输出端和调整端之间,使得图 3.4.4 所示的稳压电源输出只能从 1.25V向上调起。如果实现从 0V 起调的稳压电源,可采用图 3.4.6 所示的电路。电路中的 R2 不是直接接到 0V 上,而是接在稳压管 DZ

的阳极上,若稳压管的稳压值取 1.25V ,则调节 R2 ,该电路的输出电压可从 0V 起调。稳压管 DZ 也可用两只串联二极管代替。电阻 R3 起限流作用。

V C C _ C I R C L E

V C C _ C I R C L E

V C C _ C I R C L E

12

12

1 2

2

U i

C W 317

D Z

R 3-10V

1K

R 1

120

R 2

C 1C 2

U 0

0 .1 ¦ ÌF0 .33 ¦ ÌF

退出

Page 20: 第五讲  模拟集成电路及应用

3 .跟踪式稳压电源 在有些情况下,有时要求某一电源能自动跟踪另一电源电压的变化而变化。利用两只 CW317 集成稳压器组成的跟踪式稳压电源如图 3.4.7 所示。第一级集成稳压器 IC1 的调整端通过电阻 R2

接到第二只集成稳压器 IC2 的输出端,这就限定了 IC2 集成稳压器的输入—输出电压差。该电压差为:

)1(25.11

2O2O12

R

RUUUd

V C C _ C I R C L EV C C _ C I R C L E

12

12

1 2

12

2

U i

U 0 1

U 0 2C W 3 1 7 C W 3 1 7

C 1 C 2

R 1

R 2

R 3

R 4

2 4 07 2 0

1 2 0

1 k0 .1 ¦ ÌF 1 ¦ ÌF

退出

Page 21: 第五讲  模拟集成电路及应用

在图给定的参数下, Ud2=5V 。第二级集成稳压器的输出电压为 :

)1(25.13

4O2

R

RU

故第一级集成稳压器的输出电压为

)1(25.153

4O2d2O1

R

RUUU

可见在调节电阻 R4 改变第二级输出电压 UO2 时,第一级输出电压 UO1 自动跟踪 UO2 电压变化。

4 .恒流源电路用三端固定输出集成稳压器组成的恒流源电路如图 3.4.8 所示。此时三端集成稳压器 CW7805 工作于悬浮状态,接在 CW7805 输出端和公共端之间的电阻 R决定了恒流源的输出电流 I0 。从图中知,流过电阻 R 的电流为:

退出

Page 22: 第五讲  模拟集成电路及应用

V C C _ C I R C L E

V C C _ C I R C L E

12

12

C W 7805

I

0 .1uF

Q

R

RL

RI

I0

0 .33 ¦ ÌF

C

U i

RR

VI R

5

流过负载 RL 的电流为:

QQR IR

III 5

0

退出

Page 23: 第五讲  模拟集成电路及应用

其中 IQ 为集成稳压器的静态工作电流。当电阻 R较小, IR较大的情况下, IQ 的影响可忽略不计。可见,调节电阻 R 的大小,可以改变恒流源电流的大小。

用三端可调集成稳压器 CW317 组成的恒流源电路如图 3.4.9 所示。由于集成可调稳压器 CW317 的调整端电流非常小,仅有 50A左右,并且调整端电流又极其稳定。故该恒流源的电流恒定性及效率均比较高。该恒流源电路的输出电流为:

V C C _ C I R C L E

12

12

C W 317

R

R L

C0.1 ¦ ÌF

U i

QI

IR

I0

RI

25.10

退出

Page 24: 第五讲  模拟集成电路及应用

5.3 集成基准电压源基准电压源是一种输出电压高稳定度的电压源。它在传感器电路、自动控制系统、单片机应用系统等方面均有广泛的应用,例如作为比较器的参考电压、模—数或数—模转换器的基准电源等。集成基准电压源的突出指标是输出电压温度系数非常之小,一般可达( 0.3 ~ 100 ) ×10 –6/℃。但是集成基准电压源一般不能直接提供大的输出电流,它仅适合于作电压源使用,不能进行功率输出。目前国内外生产的基准电压源近百种,常用的有 1.2V 、 2.5V 、 5V 、 6 、 9.5V 、 10V 等。

1 集成基准电压源 MC1403MC1403 采用 8 脚双列直插式封装形式,管脚排列如图 3.4.10(a) 所示。其输入电压范围为 4 ~ 15V ,输出电压的波动范围是 2.475 ~ 2.525V ,典型值为 2.5V ,输出电压温度系数可达 10×10-6/℃。

退出

Page 25: 第五讲  模拟集成电路及应用

MC1403 的典型应用电路如图 3.4.10(b) 所示。在输出端接有 1k

的精密多圈电位器,用以精确调整所需的基准电压值。电容C 是消噪电容。该电路当输入电压从 10V 变化到 4V 时,输出电压仅变化 0.0001V 。

V C C _ C I R C L E

V C C _ C I R C L E

V C C _ C I R C L E

12

2

U i

1 2 3 4

5678

U 0 G N D N C

N CN CN CN C

U i

+ 2 .5 V

U 0

R W1 0 k

C

13

2M C 1 4 0 3

0 .0 1 ¦ ÌF

(a) (b)

M C 1 4 0 3

退出

Page 26: 第五讲  模拟集成电路及应用

将两片MC1403串联使用,可同时获得 +5V 和 +2.5V两路数出。其电路结构为图 3.4.11 所示。

V C C _ C I R C L EV C C _ C I R C L E

V C C _ C I R C L E

U i

U 01

U 02

M C 1403

M C 14031

13

3

2

2

+ 5V

+ 2 .5V

退出