110
Distributed Algorithms for Constructing Approximate Minimum Spanning Trees in Wireless Sensor Networks IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 1, January 2009 林林林 林林林林 林林林 、、 林林林 林林林林 林林林 、、 1

林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

  • Upload
    dugan

  • View
    103

  • Download
    8

Embed Size (px)

DESCRIPTION

Distributed Algorithms for Constructing Approximate Minimum Spanning Trees in Wireless Sensor Networks IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 1, January 2009. 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承. Agenda. Overview Algorithm and Analysis Random-NNT Coordinate-NNT UDG-NNT - PowerPoint PPT Presentation

Citation preview

Page 1: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

1

Distributed Algorithms for Constructing Approximate Minimum Spanning Trees in Wireless Sensor Networks

IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 1, January 2009

林明志、盧曉珍、楊孟翰簡廷因、陳怡安、孫安承

Page 2: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

2

Agenda

• Overview• Algorithm and Analysis– Random-NNT– Coordinate-NNT– UDG-NNT

• GHS V.S. NNT• Simulation Results• Dynamic Algorithm for NNT• Concluding Remarks and Future Work

Page 3: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

3

Overview

D97725004 林明志

Page 4: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

4

Motivation

• The minimum spanning tree (MST) problem is an important and commonly occurring primitive in the design and operation of data and communication networks

• Algorithms require large number of messages and time make them impractical for resource-constrained networks such as wireless sensor networks

Page 5: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

5

Introduction

• The classical GHS algorithm– Essentially optimal to the message complexity– Θ (n ln n + |E|) messages

• Time efficient distributed algorithms– Essentially optimal to the time complexity– O (Diam(G) + n1/2polylog(n)) time– Involve a lot of message transfers

Page 6: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

6

Introduction (cont’d)

• Wireless network modeled by a unit disk graph (UDG)– Ω (n ln n) messages

• Sensor network– Local and distributed – Energy-constrained– Dynamic (reconfiguration)

Page 7: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

7

Introduction (cont’d)

• Develop simple local distributed algorithms which are energy efficient, and preferably also time efficient, even at the cost (quality) of being suboptimal

Page 8: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

8

Introduction (cont’d)

• There has been work on local algorithms for construction of low-weight connected subgraphs but little work on localized construction of exact or approximate MSTs

• A structure is low-weight if its total edge length is within a small factor of the total edge length of the MST, but the structure may have cycles

• Local minimum spanning tree (LMST)– Not a low-weight structure

Page 9: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

9

Nearest Neighbor Tree (NNT)

• A fundamental step in MST problem is cycle detection– NNT: Each node chooses a unique rank, a node connects to

the nearest node of higher rank

• The NNT scheme is closely related to the Nearest Neighbor algorithm

• NNT with any ranking of the nodes gives anO(ln n)-approximate to MST

Page 10: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

10

Definition

• Weighted MST problem – Find a tree T spanning N nodes such that is

minimized

• Radiation energy rα

– When α = 1, the traditional MST problem– α is 2 and can range up to 4 in environments

Tvuvud

),(),(

Page 11: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

11

Definition (cont’d)

• Cost (quality)– – e: an edge of T

• Work– – r: transmission distance for message i– M: number of messages exchanged by the nodes

M

i irw1

TeTvuevudTQ

||),()(),(

Page 12: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

12

Network model• Wireless network composed

of n nodes distributed uniformly at random in a unit square

• Local broadcasting,d(u, v) R≦– Complete graph model– UDG, multihop setting

• To have a connected graph, WHP ( )

)ln(nnR

‧v R

u)1(/11 npr

Page 13: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

13

Contributions and Results

• Random-NNT– Ranks are chosen randomly

• Coordinate-NNT– Ranks are based on coordinates of the nodes

• UDG-NNT– Multihop wireless networks modeled by a UDG

Page 14: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

14

Contributions and Results (cont’d)

• The tree produced by the NNT has low cost

• The NNT can be used to design a simple dynamic algorithm for maintaining a low-cost spanning tree

• The time, message, and work complexities of the NNT algorithms are close to the optimal in several settings

Page 15: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

15

Performance of NNT and GHS

• Quality bounds– Co-NNT is better than Random-NNT

• Message, time, and work complexity– NNT have lower message, time, and work

complexity compared to the message-optimal GHS

Page 16: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

16

Performance of NNT and GHS (cont’d)

• Simulation results– Work and messages for NNT are significantly

smaller than for GHS– Quality of the NNT trees is very close to MST

• Maintaining a low-cost tree dynamically– The expected number of rearrangements (nodes

whose outgoing edge must change) is O(ln n)

Page 17: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

17

A local distributed algorithm for construction of approximate MST

F95942045 盧曉珍

Page 18: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

18

The NNT algorithm• ID and Rank

simple, local, no cycle, and robust

Page 19: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

19

Lemma 1• NE(v): the size of the neighborhood that node v needs to

search to find its connecting edge •

• proof:

v U1 u2 ui

)1(1

)!1()!1() toconnects P(

iii

iuv i

}1,...,2,1{),()()( ikurankvrankurank ki

)(ln)1(

1)]([1

1

nii

ivNEEn

i

Page 20: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

20

The NNT Algorithm: Random-NNT

D95922001 楊孟翰

Page 21: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

21

The NNT Algorithm

• Three types of messages:– Request– Available– Connect

• For all nodes, these phases are synchronized by making all nodes wait for Ti, the time required to complete exchanging the message, in phase i

Page 22: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

22

Algorithm 2: Distributed NNT algorithm for wireless networks

• The algorithm is executed by each node u independently and simultaneously

• Message format <msg name, sender, [recipient], [other info]>

Page 23: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

23

Analysis of the NNT algorithms

• The quality of the tree T produced by NNT

• The number of messages M• The work complexity• The time complexity of NNT algorithms

TvuvudTQ

),(),()(

M

i irw1

Page 24: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

24

Random-NNT

• Theorem 2. E[Qα(Random-NNT)]– O(lnn) for α=2– O(n1-α/2) for α<2– O(1) for α>2

u

)3C(R radius with circlein nodes ofset the

23lg

21 circles ofnumber maximum the

2

1 ,2

1i1

1

倍面積的的面積不超過

iiii

ii

mm

i

i

CCRCr

nm

rr

min

r

ri=2*ri-1

Unit square

Page 25: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

25

Proof of Theorem 2

)],([][

}2162{}Pr{}Pr{)],([

2161)1()(1}|||Pr{|)11(}Pr{

11)1(

1 is NN1)st -(k and NNjth between nodeany toconnectsu y that probabilit the

A :R vnode a toconnectsu event that the162

41 :Cin is u, other than node, particular ay that probabilit

2

)2(2

211

21

111

11

1

ii

22

11-i

vudnEQE

nrArAvudE

nppp

jkCjC

kjA

kjii

nrp

m

i

im

iii

i

n

j

jnjnj

n

j

n

jkiii

k

ji

i

i

Given one node u, 令符合條件的 NN 是 v, v 必定出現在 Ri 的機率 ( 也就是要到 phase i才能找到符合條件的 NN v), 對所有 i 加總 , 再對所有 u 加總

Page 26: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

26

Random-NNT (cont’d)• Theorem 3. The expected work complexity of Random-NNT

algorithm E[W]– O(lnn) for α=2– O(n1- α/2) for α<2– O(1) for α>2

• A(v, u, i) = the event that v replies to u in phase i• Ti = the event that u needs ith transmission (u 進入 phase i)

1) lemma(by )1(

1}|)]()()([Pr{

|C|)3C(R 3}Pr{

1

1-i

1i

kkRvsrankurankvrank

kpRv

iCs

ii

i

倍面積的的面積不超過

v 是 kth NN

Page 27: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

27

Proof of Theorem 3

}2802)1(2{][][

}23222{

:messages connect'' and request''for u by work expected theoflimit 1}Pr{

216)1()(1}Pr{

}24822{

:u tomessages) available''(for replies allby work expected theoflimit

221)}1,,(Pr{

2)1(48

)1()}(|)]()()([Pr{}Pr{

)},,(Pr{

2

)2(21

2

)2(2

1

21

111

2

)2(2

21

2

)1()2(121

11

m

i

iu

m

i

i

i

n

k

knknki

m

i

i

i

knknkiCs

n

ki

nWnEWE

n

T

ppk

T

n

nruvA

n

ppRvsrankurankvrankRv

iuvA

i

v 是 kth NN

v 在 Ri

構成 Ci-1

Given one node u, 令傳’ available’ 是 v (kth NN of u), v 在ith phase 傳的機率 , 對所有 k 加總 , 考慮 radiation energy (ri 的 α 次方 )

構成 Ci-1

rank(u) 最大

對所有 u 加總

Page 28: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

28

Random-NNT (cont’d)

• Corollary 4. for i 2≧– The expected number of nodes that needs ith

transmission:

– The expected number of required transmissions by a node to find a higher ranked node:

iinTn

416}Pr{

425.1341)

211(

341}Pr{

1

n

Tm

ii

對所有 nodes 加總

對所有 phases 加總

Page 29: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

29

Random-NNT (cont’d)

• Theorem 5. The expected message complexity of Random-NNT algorithm is O(n)

)(}280)1(2{][2

2 nOnMEm

i

i

Theorem 3 去掉 radiation energy (r 的 α 次方 )

Page 30: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

30

Random-NNT (cont’d)

• Scheduling messages and resolving collisions– Ki = number of messages that potentially collide with u’s

messages in phase i; ki 2≧– Fi = a time frame containing at least ki time slots; each

phase i contains O(lnn) such time frames– If a message is in collision, u picks a random slot in the

next frame for this message– Probability of a message not colliding = (1-1/ki)ki-1 1/e≧– The time to complete phase i = Ti = O(kilnn)

所有 time slots 都不會 collide

Page 31: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

31

Random-NNT (cont’d)

• Theorem 6. The time complexity of Random-NNT algorithm is O(ln3n) WHP

)(ln)ln( and )(ln)ln(

ln||

1ln and ,4|][| ,||with

))1(

(})1(Pr{

:bound Chernoff standard the

311

221

1

2111

1

nOnkOTnOnck

ncC

ncnrCECx

ex

The total number of messages by nodes within r1 (phase 1)

Page 32: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

32

Proof of Theorem 6

• Let |Ci|=y and |Ci-1|=x; z=|Ri|=y-x• Assume y 60ln≧ n => E[x] y/4 15ln≧ ≧ n

tzy

zt y

tytn

xyxyz

xE

)(!

)!1(!)(}messages available''exactly t receivesu Pr{

1})1(Pr{}8

Pr{}87Pr{

][ and 21with

3.2

Page 33: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

33

Proof of Theorem 6 (cont’d)

)1(}messages available'' ln20 than more receivesu Pr{)1(lg21

}phase somein replies ln20 than more receives nodesn theof somePr{

81}8

Pr{}8

|messages available'' ln20 than more receivesu Pr{

}messages available'' ln20 than more receivesu Pr{

8}8

|messages available'' ln20 than more receivesu Pr{

)()(}messages available'' ln20 than more receivesu Pr{

2.1

6.23.2

6.2

ln20

ln20

nOnnn

nnn

yxyxn

nn

yxn

yz

zyy

yzn n

z

nt

t

123lg

21

nany node 在 any phase 收到 O(lnn)messages 的機率的期望值

Page 34: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

34

Analysis of Coordinate NNT

D97922019 簡廷因

Page 35: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

35

Analysis of Coordinate NNT

• The expected quality• The expected work complexity• The expected message complexity• The time complexity

Page 36: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 7

• Theorem 7. The expected quality of Co-NNT for and 2 are and , respectively.1 )( nO )1(O

36

Page 37: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

37

Proof of Theorem 7 (cont’d)

• We put the cell containing u, then one cell from above u and one cell from below u, by interleaving them.• We put the cells in Column k + 1 in their

original order beginning from the bottommost cell to the topmost cells , then the cells in Column k + 2 in the same order, and so on.

n

n

1 n

Page 38: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 7 (cont’d)

• Node u connects to a node in the ith next cell, if the next cells are empty and there is a node in the ith next cell.

• The probability that the next cells are empty is

1i

1i1)11(

n

ni

38

u … …v

ith 所有其他 n-1 個點都在這

i-1 n-(i-1)

Page 39: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 7 (cont’d)

• P’ be the probability that there is a node in the ith cell given that the first cells are empty

• Pi be the probability that u connects to a node v in the ith cell

1i

39

Page 40: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 7 (cont’d)

40

1 1( 1)1 1 21 1(1 ) ' (1 )i inn n n

ii iP P e e

n n

11 12

1 1

[ ( , )] ( ) ( )in n

ii i

iE d u v ib P en

1

1 2 1

1

1[ ] [ ( , )] ( )n

i

i

E Q nE d u v n ie

12

21

1[ ] ( ) (1)n

i

i

E Q e i Oe

1

11

1[ ] ( ) ( )n

i

i

E Q n e i O ne

Page 41: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

41

Proof of Theorem 8

• The expected work complexity of Co-NNT algorithm, for and 2 are and , respectively.

1 )( nO )1(O

Page 42: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 8 (cont’d)

• We subdivide the area into cells and consider the rearrangement of the cells in a single row as described in the proof of Theorem 7.

• The transmission radius for ith phase is • Length of each cell is

n

i2

nb 1

42

… …

i-1 phase i phase

cells12i cells12i cells12in n

b 1

Page 43: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 8 (cont’d)

• A node u need ith transmission if the next cells are empty.

• Let Ti be the event that u needs ith transmission. and for

12 i

1}Pr{ 1 T 2i

43

Page 44: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

44

Proof of Theorem 8 (cont’d)

• The number of available messages u receives in phase i is the number of nodes in cells that are covered by the transmission i but not by transmission .

1 12 2 2i i i

1i

… …

i-1 phase i phase

cells12i cells12i cells12in

Page 45: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

45

Proof of Theorem 8 (cont’d)

• For , the expected number of such nodes in these cells, given that the first cells are empty, is

• The expected number of replies in the first phase is

2i 12i 12i

2( 1) 2nn

1 11 1 1 1

1 1 1

2 2( 1) 2 2 (1 ) 2 (1 2 )2 2 2

i ii i i i

i i i

nnn n n

Page 46: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

46

Proof of Theorem 8 (cont’d)

• In addition, in each phase, there are at most one request message and one connect message by u. Thus, the expected work by u

22 2

2

2 2 14 (2 ) ( )i

i

i i in n e

lg1 1

12

[ ] (2 2)(2 ) Pr{ } {2 2 (1 2 )}(2 ) Pr{ }n

i i iu i

i

E W b T b T

Page 47: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 8 (cont’d)

• The total work by n nodes

• Putting and 2, we have the desired result.

47

1 2 2

2

1[ ] [ ] 2 {4 (2 ) ( ) }iui

E W nE W n i i ie

1

Page 48: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

48

Proof of Theorem 9

• Theorem 9. The expected message complexity of Co-NNT algorithm is .( )O n

Page 49: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

49

Proof of Theorem 9 (cont’d)

• When , the total work is equal to the number of messages M. Thus, using , we have .

1 2 2

2

1[ ] [ ] 2 {4 (2 ) ( ) }iui

E W nE W n i i ie

0 0

[ ] ( )E M O n

Page 50: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

Proof of Theorem 10

• Theorem 10. The time complexity of distributed Co-NNT algorithm is O(ln3n) WHP.

50

Page 51: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

51

Proof of Theorem 10

• Using the same argument as in Theorem 6– the running time for the first phase of Co-NNT

algorithm is WHP.– After ( )st phase, the maximum number of

unconnected nodes in any circle of radius is constant,

31 (ln )T O n

1i

)1(Oir

Page 52: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

52

Proof of Theorem 10 (cont’d)

– Let Bi denote the common region among the right half-plane, the disk with radius ri centered at u, and the unit square

– Let ai be the area of the region Bi

Page 53: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

53

Proof of Theorem 10 (cont’d)

• Using simple geometry, it can easily be shown that for any position of u in the unit square.

• Let ni be the number of nodes in Bi excluding u.

1 12 4i i ia a a

Page 54: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

54

Proof of Theorem 10 (cont’d)

• Case : Then, . By Chernoff bound with and , we have

• Thus, the probability that u receives more than replies is at most .

12ln1ina

n

[ ] 12 lniE n n

[ ]iE n 36ln 1n

Pr{ 36ln } Pr{ (1 ) }i in n n

(1 ) (1 ) 3( (1 ) ) ( (1 )) 1e e n

36ln n 31 n

Page 55: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

55

Proof of Theorem 10 (cont’d)

• Case : Then, . • In this case, the probability that u needs ith

transmission, is

• Thus, with probability at least , either u does not need phase i or the number of replies in phase i is .

12ln1ina

n

13ln

4 1i

ia na

n

1( 1)1 31(1 ) 1in an

ia e n

31 n

(ln )O n

Page 56: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

56

Proof of Theorem 10 (cont’d)

• This statement holds simultaneously for all of phases for all n nodes with probability

at least (by the union bound). • The running time of each phase is

• The total time is WHP.

(ln )O n

2i2( ln ) (ln )i iT O k n O n

3(ln )O n

Page 57: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

57

NNT Algorithm for Multihop Wireless Networks

F95942045 盧曉珍

Page 58: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

58

UDG model

• Two nodes can communicate if and only if d(u,v)≤R,

• The sink node is designated as the root of the tree

)ln(nnR

Page 59: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

59

UDG-NNT Algorithm• Phase 1: rank generation– Sink s picks p(s), send p(s) and ID(s) to neighbors– u receives the first message from a neighbor, v. u

generates p(u) [p(v)-1, p(v)). – u then sends p(u) and ID(u) to neighbors. – Later messages are simply stored.– The rank(u) is determined by p(u) and ID(u)

Page 60: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

60

UDG-NNT Algorithm – cont.• After phase 1– Ranks of all neighbors are known– Sink s has highest rank– Each node u has at least one neighbor v such that

rank(v) > rank(u)• Phase 2: each node, except s, sends a connect

message to its nearest neighbor with higher rank

Page 61: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

61

Analysis of UDG-NNT• Quality:

• Message complexity: • Work complexity: • Time complexity:– a node has to spend time to transmit its

message. – D: the diameter of UDG.

)ln()1()( 221

nnRnNNTQ

)(ln)]([),ln()]([ 21 nONNTQEnnNNTQE

)(2 nOn

)ln(2 221

nnOnRW

WHP)ln(complexity Time

)(ln ),ln(2/3

22

21

nnO

nOTnDOT phasephase

)(ln2 nO

WHP)ln/()/1( nnRD

Page 62: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

62

D95725004陳怡安

GHS v.s. NNTApproximate solution

High message and work complexity

Exact solution

Low message and work complexity

Page 63: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

63

GHS

• A well-studied distributed MST algorithm• Computes “EXACT” MST • Upper bounds of time and message

complexity have been analyzed in original paper

• Here we analysis the lower bounds of time and message complexity

Page 64: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

64

GHS: Utilizing two properties of MST

• Definition – MST fragment– A connected sub-tree of MST

• Property 1

Given a fragment of an MST, let e be a minimum-weight outgoing edge of the fragment. Then joining e and its adjacent non-fragment node to the fragment yields another fragment of an MST.

54

8 3

1

7

2 6

e

Page 65: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

65

GHS: Utilizing two properties of MST

• Property 2

If all the edges of a connected graph have different weights, then the MST is unique.

4

8 3

1

7

2 56

4

8 3

1

7

2 56

4

8 3

1

7

2 56

X

Page 66: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

66

GHS

• Idea of MST based on properties 1 & 2– Enlarge fragments in any order, combine

fragments with a common edge (property 1)– The union of these fragments is also a fragment

(property 2)

4

8 3

1

7

2 56

4

8 3

1

7

2 56

4

8 3

1

7

2 56

……

Page 67: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

67

GHS algorithm

• Every fragment changes its state and merges with other fragment iteratively

• Until it cannot find any outgoing edges

Sleeping

Find

Found

End

Initiate

Test, Reject or Accept, Connect

No minimal edge can be found

Awakes

Page 68: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

68

core

4

3

1

7

2 56

8Initiate

4

3

1

7

2 56

8Test (Asynchronously)

4

3

1

7

2 56

8

4

3

1

7

2 56

8Reject Accept

Finds the outgoing edge

Cycle Outgoing edge

Page 69: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

69

Determine the minimal outgoing edge

Every interior sends the Report when resolved its outgoing and all its children sent theirs. 4

3

1

7

2 56

8

Page 70: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

70

Lower Bound of Messages

• Radius of neighborhood: – The smallest radius to keep the nodes connected

with high probability• Expected number of neighbors:• Every node at least exchanges messages– Every edge can be “rejected” only once – A node can receive at most one “accept” message

• The total expected number of messages is:

)ln(nn

)(ln n

)(ln n

)ln( nn

Page 71: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

71

Lower Bound of Work

• If we redistribute the nodes in As to Ac, the expected distance to u will decrease!!

方型和圓型同樣的面積

Page 72: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

72

Probability Density

Function

Ci(r): i-th NN 的半徑小於或等於 r 的機率的加總 == 1- i-th NN 的半徑大於 r 的機率 == 1- ( 在半徑裏的 NN 小於 i 個的機率 )

Cumulated Probability of

r is the i-th NN’s radius

對 r 微分

urR

Page 73: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

73

Tk

Tk+1

Page 74: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

74

2Upper Bound : R’= ,

2

u

Page 75: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

75

Analyze test/accept/reject messages only Every node pass messages to adjacent edges one by one Expected number of neighbors of a node is cln n Expected work of GHS is

Expected total work is

nc

i nn

niln

1

2

)ln(

Page 76: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

76

Simulation

Page 77: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

77

Environment • Experimental Setup

– Number of Nodes: varying from 50 to 5000– Node distributions:

a) Uniformly random distributions in the unit square. Realistic distributions of points in an urban setting.b) TRANSIMS ( TRansportation ANalysis SIMulation System )

– Number of Runs: 50– Measures:

quality for α = 1 and 2 number of messageswork for α = 2

Page 78: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

78

Comparison

• Co-NNT vs. GHS-YaoYao graph – complement of geometry for GHS

• Random-NNT, UDG-NNT vs. GHS

Page 79: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

79

Measurement

• Quality• α = 1• α = 2

• Number of messages• Work

• α = 2

Page 80: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

80

Quality for α = 1

Page 81: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

81

Quality for α = 2

Page 82: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

82

Number of Messages

Page 83: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

83

Work

Page 84: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

84

Experiments on Real Data

• A section of downtown Portland, OR.• 2.9KM x 2.95KM, approximately 9 square KM.• The distribution of points– Cars on the roadway

• Data resource : TRANSIMS simulation– does a very detailed modeling of urban traffic,

combing a variety of data sources ranging from census data to activity surveys to land use data.

Page 85: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

85

Experiment Results

• Work is computed for α = 2.• 3 snapshots, at 1 minute intervals.

Page 86: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

86

Main Results

• Co-NNT always outperforms Random-NNT on quality, number of messages, work.

• For α = 1, all NNTs give a good approximation to MST, especially Co-NNT within 10%.

• For α = 2, Random-NNT no good, but UDG-NNT and Co-NNT remains within a factor of 2.

• Number of messages and work done by NNT are significantly smaller than GHS.

Page 87: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

87

Dynamic Algorithm for NNT

Page 88: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

88

Goal

• To maintain a tree of good quality, as nodes are added or deleted.

• To maintain an NNT tree.

Page 89: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

89

Measurement

• Number of rearrangements– The number of the edges to be deleted from and

added to the tree, to maintain NNT, due to addition or deletion of a node.

Page 90: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

90

Dynamic Random-NNT

• After a node v is added to the network, there will be some nodes u under 2 circumstances– rank(v) < rank(u)– rank(v) > rank(u)

What happens?

Page 91: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

91

Dynamic Random-NNT

• After a node v is added to the network, there can be some nodes u such that– rank(v) > rank(u) and d(u,v) < d(u,nnt(u))

• u must change its connection from previous nnt(u) to v.

• v is the new nnt(u).• u is affected by v.• Problem : find out the affected nodes.

Page 92: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

92

Dynamic Random-NNT Data Structure

• Each node maintains two lists– Q(v)• The set of nodes in closed ball B( v , nnt(v) )• v 涵蓋那些 nodes

– L (v)• L(v) = { u | v Є Q(u) }• v 被那些 nodes涵蓋

• Closed ball B( v , r )– 以 v為圓心, r為半徑所形成的 space

Page 93: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

93

Affected Nodes

• How to find the affected nodes by the data structure Q(v) and L(v) ?

Page 94: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

94

Find Affected Nodes

1. Node v joined the network.2. Divide the 2π angle around v into 6 wedges

of equal size.3. Let w1 ,w2 ,…,w6 be the closest nodes in these

wedges.4. Only the nodes in L(wi) can be affected.5. Why?

Page 95: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

95

Dynamic Random-NNT Algorithm

Page 96: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

96

Dynamic Random-NNT Algorithm

• If a node v is added– 1) v chooses a random rank, and creates two lists

of nodes, Q(v) and L(v), which are initially empty.

Page 97: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

97

Dynamic Random-NNT Algorithm

• If a node v is added– 2) v checks its neighbors v1, v2, … in non-decreasing

order of d(v, vi), till it finds the closest neighbor vj of higher rank. v adds each such vi, i ≤ j, in Q(v) and sends a message to vi to add it in L(vi).

Page 98: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

98

Dynamic Random-NNT Algorithm

• If a node v is added– 3) v finds the closest node in each of the 6 wedges.

For each of these closest nodes, w, v sends an UPDATE message to each u Є L(w). Node u, upon receipt of this message, does the following:

Page 99: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

99

Dynamic Random-NNT Algorithm

• 3)– a) Let u1, u2, … be the neighbors of u in non-

decreasing order of d(u, ui), and uk be nnt(u).– b) If d(u, v) ≤ d(u, uk) and rank(v) > rank(u), u

removes um from Q(u) and itself from L(um), for every j < m ≤ k, where v = uj . Further u connects to v, instead of uk, and adds v to Q(u) and itself to L(v).

– c) If d(u, v) ≤ d(u, uk) and rank(v) < rank(u), u adds v to Q(u) and itself to L(v).

Page 100: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

100

Dynamic Random-NNT Algorithm

• If a node v is deleted– 1) v sends a message to each u Є Q(v). Node u,

after receiving this message, removes v from L(u).

Page 101: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

101

Dynamic Random-NNT Algorithm

• If a node v is deleted• 2) v also sends a message to each u Є L(v).

Node u, upon receipt of this message, removes v from Q(u). If nnt(u) = v, u checks the neighbors vi beginning from distance d(u, v) onward until it finds the new nearest node of higher rank, adds each such vi in Q(u), and sends a message to vi to add u in L(vi).

Page 102: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

102

Measurement

• Lemma 13– For any sequence of n node insertions and

deletions, the total charge on any node u is O(ln n) WHP.

– 1 charge = 1 cover

Page 103: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

103

Proof of Lemma 13

• Consider any point u, and partition the 2π angle around u into 6 cones, each of angle π/3.

• Order the points in the cone as v1, v2, …., based on increasing distance from u.

Page 104: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

104

Proof of Lemma 13

• Node vi places a charge on u only if– rank(vi) > rank(vj), for all 1 ≤ j < i.

• Probability = 1 / i .

• Total expected charge =

Page 105: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

105

Measurement

• Corollary 15– Degree of any node v in the NNT is O(ln n) W.H.P.

• Proof– The degree of v is at most the charge on v.– Proved by lemma 13.

Page 106: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

106

Measurement

• Theorem 16– For any sequence of n node insertions and

deletions, the number of rearrangements per insertion or deletion is O(ln n) WHP.

Page 107: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

107

Proof of Theorem 16

• When v is added– Only the nodes u Є L(v) may need to change its

connection.– 2|L(v)| = O(ln n) W.H.P. ( Lemma 13 )

• When v is deleted– Only the nodes u such that nnt(u) = v need to find a

new parent to connect to.– Deletion of D(v) edges and addition of D(v) – 1 new

edges.– 2D(v) – 1 = O(ln n) W.H.P. ( Corollary 15 )

Page 108: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

108

Concluding Remarks and Future Work

D97725004 林明志

Page 109: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

109

Concluding Remarks and Future Work

• NNT is a simple and local scheme for constructing and maintaining low-cost trees

• Future Work– For arbitrary point distributions– Tradeoff between the amount of local information and the

quality of the tree– Tighter bound for quality of UDG-NNT– Determine whether it is possible to design a distributed exact

MST algorithm with better work complexity than GHS and obtain a lower bound on work complexity

Page 110: 林明志、盧曉珍、楊孟翰 簡廷因、陳怡安、孫安承

110

Thank you for your attention!