10
1 記記記記記 - 記記記記記記記 (EUV) 記記記記 - 記記 15 記 11 記 26 記 ( 記 ) 13 30 記 14 30 記記記記記記記記記記記記記記記記記 記記記 記記記記記 記記記記記記記記記記記記記記記記 :() 記記記記EUV 記記記記記記記記記記記 EUV 記記記記記記記記記記 記記記記記記記記記記記記記記 EUV 記記記記記記記記記記記記 EUV 記記記記記記記記記記記記記記記記記記記記記記 記記記 記記記記記記記

記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

  • Upload
    ryu

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -. 日  時:平成 15 年 11 月 26 日 ( 水 ) 13 : 30〜14 : 30 場  所:大阪大学レーザー核融合研究センター 発 表 者:井澤靖和(文部科学省プロジェクトリーダー) 発表内容:   ー  EUV リソグラフィの重要性と EUV 光源開発の世界的動向   ー  本センターで達成された高効率 EUV 光源の研究成果とその意義   ー  EUV 光源開発の今後の展開と実用化技術移転の見通し その他:研究設備の見学. - PowerPoint PPT Presentation

Citation preview

Page 1: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

1

記者会資料

-高効率極端紫外 (EUV) 光源開発 -

•    日 時:平成 15 年 11 月 26 日 (水 )  13 : 30 〜 14 : 30•    場 所:大阪大学レーザー核融合研究センター• 発 表 者:井澤靖和(文部科学省プロジェクトリーダー)• 発表内容:  ー  EUV リソグラフィの重要性と EUV 光源開発の世界的動向  ー 本センターで達成された高効率 EUV 光源の研究成果とその意義  ー  EUV 光源開発の今後の展開と実用化技術移転の見通し• その他:研究設備の見学

Page 2: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

2

1次世代半導体製造リソグラフィ用に開発を進めてきたレーザープラズマ極端紫外 (EUV) 光源において世界最高の変換効率 3.0 %を達成し(補足1、2)、実用機開発へ向けた課題の一つがクリアーされました。また、文部科学省リーディングプロジェクトの下で整備を進めてきた EUV 光源開発共同実験設備が整備され(補3)、光源開発研究がさらに加速されます。この成果は 11 月28 日水戸で開催されるプラズマ・核融合学会年会にて発表されます。

2.現在開発が進められている F2 レーザー (波長 157nm (ナノメートル) )でも線幅 60nm が限界(補足4上)とされていま

す。このため、プラズマ放射極端紫外 (EUV )光源を用いたリソグラフィ技術(補足4下)は、半導体集積回路の超微細化におけるキーテクノロジーの一つとして今大きな注目を浴び、線幅 50nm 以下の次世代半導体プロセスへ向けた波長 13-14nm の EUV を光源とした光リソグラフィ技術の開発に熾烈な国際競争が繰り広げられています(補足5上)。日本では経済産業省のもと平成 14年 6月 EUV リソグラフィシステム開発のための技術研究組合 EUVA ( Extreme Ultraviolet Lithography System Development Association )が組織され、 EUV 光源開発が最重要課題の一つとして取り上げられました(補足5下)。

3.光源に対する要求仕様値は半導体製造企業とリソグラフィ装置製造企業の協議により決定され、現在のところ、中心波長 13.5nm 、帯域幅 2 %に、繰り返しレート 7 〜 10kHz以上のパルスで、光源取り出し部での EUVパワーが 115W以上必要(補足6上)とされおり、投入されたレーザーパワーから EUV 光パワーへの変換効率の向上が重要な開発課題(補足6下)となっています。今回、錫(スズ)をターゲットとし、一様性の高いレーザーで球対称に照射することにより、変換効率 3.0 %を達成しました。これまでの目標値、2%以上、を大きく上回ったことになります。

4.大阪大学レーザー核融合研究センターでは、平成 15 年度より開始された文部科学省リーディングプロジェクト(補足7)の下で、国内の大学や研究所と共同しながら、新たに極端紫外 (EUV) リソグラフィ用レーザープラズマ光源開発研究を推進しています。

5.レーザープラズマ EUV 光源開発研究には高出力レーザー技術、ターゲット技術、プラズマ計測技術、理論・シミュレーショ

ンの4つの研究項目が重要であり、またこれらの要素が互いに深く連携し成果をフィードバックしていく必要があります。この

ような研究課題やアプローチはレーザー核融合研究と多くの共通点があり、これまで培われてきた核融合の物理的基盤や、レー

ザー技術、ターゲット製作、プラズマ計測などの技術的研究資源がレーザープラズマの産業応用にも生かされようとしていま

す。

成果説明

Page 3: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

3

 光源に用いる物質からは固有のスペクトルをもった EUV 光が放射されます。リソグラフィ光源として要求される波長 13.5nmの光を発生するには、錫やキセノンが適しています。

 照射するレーザー強度の増大に伴い、発生したプラズマの温度が増大し、変換効率も増大しますが、過度な強度にすると、温度が上がりすぎて最適条件からはずれるため、かえって変換効率は低下してしまいます。

 実験で確認された結果は理論的予想ともよく一致しています。

0

1

2

3

4

10 100 1000

レーザー照射強度 (ギガワット /平方センチメートル )

理論予測実測値

変換

効率

(%

投入されたレーザーエネルギー

波長 13.5nm 帯域幅 2 %に含まれる EUV 光のエネルギー変換効率=

錫をターゲットとし、プラズマ発生の最適条件を整えることにより、3%の変換効率を得ることに成功した(世界最高値)

Page 4: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

4

レーザー光

錫コートターゲット

0.5 mm

錫プラズマの 13.5nm 単色画像

最大変換効率を与えるレーザー照射強度における発光スペクトル

0

2

4

6

8

8 10 12 14 16 18 20

発光強度

 (任

意単位

EUV 波長 (nm)

中心波長 13.5nm帯域幅 2 %領域

一様性の高いレーザーを球状ターゲットに照射することにより、熱損失の少ないプラズマが発生でき、 EUV 光への高い変換効率が達成された。

Page 5: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

5

100 m

1 m

低密度 酸化錫 の電顕像(固体酸化錫密度の 23%)

放射プラズマの単色画像 (@13.5 nm 2%BW)

レーザー

ターゲット

to EUV ピンホールカメラ

0

1

2

3

4

5

6 8 10 12 14 16 18 20 22EUVåıîgí∑ (nm)

固体錫

低密度酸化錫(固体の 59%密度)

低密度酸化錫( 23 %密度)

波長中心 13.5nm帯域幅 2 %の領域

得られた錫プラズマからのスペクトル。さら低密度酸化錫にしてターゲットの初期密度を下げると、不要なスペクトル成分を除去でき、ターゲット供給量も減らすことができます(特許出願済み)。

Page 6: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

6

EUV プラズマ発光像

EUV データベース用レーザー

ターゲットチェンバー

EUV標準カロリメータ

ターゲットチェンバー制御盤

EUV 光源開発研究 /共同利用設備が整備され、全国共同利用により EUV 光源プラズマ研究がさらに加速されます。

Page 7: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

7

îNë„

çÇNAí· NA

19702000199019802010100200300500700

2030507010

100020003000g êi êKrFÉåÅ[ÉUÅ[ArFÉåÅ[ÉUÅ[F2ÉåÅ[ÉUÅ[

EUV 13 nm

èkè¨ìäâeòIåıçÇNAèkè¨ìäâeåıäwånÇ≈ÇÃé¿ópìIâ ëúå¿äE

í·NAèkè¨ìäâeåıäwånÇ≈ÇÃé¿ópìIÇ»â ëúå¿äEèWêœâÒòHÇÃç≈è¨â¡çHê°ñ@ÅAòIåıîgí∑Å@ÅiÇéÇçÅj

ÉRÉìÉ^ÉNÉgòIåı

ã≠Ç¢í¥â ëúé„Ç¢í¥â ëúULSIÇÃî˜ç◊âªÉgÉåÉìÉhÅ@Å@Å@Çw ÇO.ÇV/ÇRîN

ïΩñ CMOSÇÃé¿èÿ

1:1ìäâeòIåı微細化とともに光源は短波長化 家電情報通信機器の基盤技術は、半導体集積回路の超微細化であり、リソグラフィ露光システムで用いられる光源は KrF レーザー (波長248nm)  から ArF  レーザー (193nm) へと、短波長化への歩みを早めている。

線幅 50nm 以下では EUV 光源が必要現在開発が進められている F2 レーザー (157nm) でも、線幅 60nm が限界とされている。

EUV リソグラフィの導入は 2009年このような動きを背景に、線幅 50nm 以下の先進半導体プロセスを目指して、波長 13 〜 14nm の極端紫外線 (EUV) を光源としたリソグラフィ技術の開発に熾烈な国際競争が繰り広げられている。

ASET資料を元に作成

補足 4

半導体デバイス微細化のトレンド

Page 8: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

8

・ 1998 年  ASET設立  EUV リソグラフィ要素技術開発開始 (EUV 光源は含まず )・ 2002 年  EUVA 設立  EUV 光源開発開始 (装置化技術 )・ 2003 年 文部科学省リーディングプロジェクト (LP) EUV 光源開発開始 (基盤技術 )

ASET: 技術組合 超先端電子技術開発機構EUVA: 技術組合 極端紫外線露光システム技術開発機構

7

ASET (14社 ) EUV 研究室EUV の要素技術開発

絶対波面計測技術2社

マスク・レジスト技術(自主開発)

MIRAI リソグラフィ関連マスク・計測技術

EUV 光源技術5社 + 2 大学

露光装置技術2社 + 大学

文科省 LP: EUV 光源開発10 大学 + 3 研究所

EUVA(10社 ) 連携経済産業省

文部科学省

‘98 ‘99 ‘00 ‘01 ‘ 02 ‘03 ‘04 ‘05 ‘06 ‘07 ‘08

我が国における EUV リソグラフィ開発体制

Page 9: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

9

1. 高変換効率: >2%  レーザー照射条件の最適化(エネルギー、波長、パルス幅、パルス波形)  ターゲットの最適化(材料、形状、構造)2. 高安定性(強度、空間): ±0.3%3. 高繰り返し、高安定ターゲット供給技術4. 集光光学系の長寿命化:デブリ (飛散物 ) フリー(デブリの制御と抑制)5. 高出力レーザー開発: >20kW, >10kHz

高変換効率実現のために

ターゲット材料の候補:キセノン (Xe+10) 、錫 (Sn+9~12) 等多価イオンに関する物性データは無い

EUV 光源プラズマ物理の解明

実験とシミュレーションによる高効率化の指針

・多価イオンに関する物性データの取得・ EUV プラズマに関する実験データベースの構築

・多価イオンに関する原子モデルの構築・光源プラズマシミュレーションコードの開発

EUV 光源の開発課題

Page 10: 記者会 資料 - 高効率極端紫外 (EUV) 光源開発 -

10

目的:レーザープラズマ EUV 光源基盤技術の開発(平成 15 〜 19年)   システム化技術、装置化技術を分担する経産省プロジェクトと連携参加機関と分担課題 ・大阪大学グループ   1 . EUV 光源プラズマのモデルとシミュレーションコード開発(阪大、都立大、北里大、    山梨大、核融合科学研、京大、原研関西研、奈良女子大、レーザー総研、岡山大)     EUV 光源プラズマの物理の解明と実用化への指針   2 . EUV 発生に関する実験データベースの構築(阪大、レーザー総研)    レーザーおよびターゲット条件の最適化と高効率化の指針   3 .新ターゲット開発(阪大)    キセノンおよび錫の低密度フォームターゲット   4 .高性能レーザー開発(阪大)    高出力・高繰返しレーザー基盤技術開発と実用化レーザー設計指針   5 .共同利用実験設備の整備と計測の標準化(阪大) ・姫路工業大学   1 .キセノン固体ターゲットの開発と高速・連続供給技術   2 .デブリの計測とその対策 ・九州大学   1 .錫のクラスターターゲット開発   2 .炭酸ガスレーザーによる EUV プラズマ研究 ・宮崎大学   1 . EUV 光の絶対計測技術   2 .ドロップレットターゲットとデブリ計測

補足 7文部科学省 リーディングプロジェクト

極端紫外( EUV )光源開発等による先進半導体製造技術の実用化