57
공학석사 학위논문 이족보행로봇의 양팔 설계 및 동역학 해석 Two Arms Design and Dynamic Analysis of Biped Walking Robot 지도교수 최형식 2007년 2월 한국해양대학교 대학원 기계공학과

이족보행로봇의양팔설계및동역학 해석repository.kmou.ac.kr/bitstream/2014.oak/9946/1/000002175679.pdf · an FEM analysis was performed using ANSYS tool to estimate

  • Upload
    vannhu

  • View
    229

  • Download
    6

Embed Size (px)

Citation preview

  • Two Arms Design and Dynamic Analysis of Biped Walking

    Robot

    222000000777 222

  • ...

    ()

    ()

    ()

    2007 2

  • Two Arms Design and Dynamic Analysis of

    Biped Walking Robot

    GGGuuueeennn---WWWhhhaaaLLLiiimmm

    DDDeeepppaaarrrtttmmmeeennntttooofffMMMeeeccchhhaaannniiicccaaalllEEEnnngggiiinnneeeeeerrriiinnngggGGGrrraaaddduuuaaattteeeSSSccchhhoooooolll,,,KKKooorrreeeaaaMMMaaarrriiitttiiimmmeeeUUUnnniiivvveeerrrsssiiitttyyy

    AAABBBSSSTTTRRRAAACCCTTT

    In this paper, I designed and constructed two light-weighted 12 d.o.f

    robot arms for the humanoid robot and studied its kinematics model. The

    weight of one arm is light enough to be 9 Kg but capable of delivering

    10Kg pay load.

    To find out the characteristics of the robot arm, an analysis on the

    kinematics and dynamics was performed. For appropriate design of the

    motor capacity, a computer simulation based on the analysis on the

    kinematics and dynamics was performed. Through this, the required

    torques for delivering the payload were capable of measuring.

    Since an ultra-light robot arm despite of heavy pay load was designed,

    an FEM analysis was performed using ANSYS tool to estimate deformation

    of the robot link. The accuracy of the analysis was verified through the

    actual pay load test measuring the deformation of the robot link.

  • K

    im i

    V

    L Lagrangian ( )VKL =( )S (skew symmetric matrix)

    iI i (inertia moment)

    vciJ i (Jacobian)

    iJ i

    D

    C (Coriolis)

    i i

    iO i

    iq i

    il i

    cil i

    id

    iF

    i

    H

    Q

    iM

  • AbstractAbstractAbstractAbstract

    1 1 1 1 .......................................................................... 1

    2 2 2 2 ........................................ 3

    2.1 .......................... 5

    2.2 ......................................... 8

    2.3 ................................ 11

    3 3 3 3 ................................ 13

    3.1 ................................................... 13

    3.2 ................................................................. 17

    3.3 .......................................... 21

    3.4 .......................................... 28

    3.4.1 ............ 28

    3.4.2 ......... 31

    3.4.3 ............ 33

  • 3.3.4 ....................... 35

    3.3.5 ............... 35

    4 4 4 4 ........................................ 37

    4.1 4 ................. 37

    5 5 5 5 ............................ 42

    5.1 .......................................................... 42

    5.2 .......................................................... 43

    5.3 .................................................. 45

    5.4 ...................................................... 45

    6 6 6 6 ........................................................................ 48

    ............................................................................... 49

  • Table 2.1 Specification of the KUBIR-2 ..................................... 10

    Table 2.2 Degrees-of-freedom of the KUBIR-2 ......................... 10

    Table 3.1 Link parameter for the KUBIR-2 arm ........................... 14

    Table 4.1 Constants of the load torque in each joint .................. 39

    Table 5.1 Material property ....................................................... 43

    Table 5.2 Element type and number .......................................... 43

    Table 5.3 Displacement FEM of the KUBIR-2 arm ...................... 43

    Table 5.4 Experiment result of displacement of the KUBIR-2 arm

    .............................................................................................. 46

    Table 5.5 Adjusted displacement by servo motor ........................ 46

  • Fig. 2.1 Structure of the KUBIR-1 arm ........................................ 3

    Fig. 2.2 Structure of the KUBIR-2 arm ........................................ 4

    Fig. 2.3 Structure of for bar link ................................................. 5

    Fig. 2.4 3 dimensional model of the one axis actuator ................. 6

    Fig. 2.5 Structure of the one axis actuator.................................... 7

    Fig. 2.6 Structure of the two axis actuator.................................... 7

    Fig. 2.7 System composition of the KUBIR-2 arm ........................ 8

    Fig. 2.8 3 dimensional model of the KUBIR-2 arm ..................... 12

    Fig. 3.1 D-H coordinate frame assignment for the KUBIR-2 arm ..14

    Fig. 3.2 Four-bar-link structure for shoulder joint ....................... 28

    Fig. 3.3 Four-bar-link structure for elbow joint .......................... 31

    Fig. 3.4 Four-bar-link structure for wrist joint ............................ 33

    Fig. 4.1 Torque analysis of the shoulder joint ............................. 37

    Fig. 4.2 Torque analysis of the elbow joint ................................ 38

    Fig. 4.3 Torque analysis of the wrist joint ................................ 38

    Fig. 4.4 Load torque of the shoulder joint ................................ 40

    Fig. 4.5 Load torque of the elbow joint ..................................... 40

    Fig. 4.6 Load torque of the wrist joint ....................................... 41

    Fig. 5.1 Finite element model ................................................... 42

    Fig. 5.2 FEM result of KUBIR-2 arm .......................................... 44

    Fig. 5.3 Comparison result of FEM analysis and experiment ........ 47

    Pic. 5.1 Experiment setup of the KUBIR-2 arm for displacement

    measure ................................................................................. 45

  • 1

    1 1 1 1

    .

    . ,

    HRP-2, I-FOOT, KAIST [1-3] 50kg

    .

    .

    ,

    , .

    [4], 2R SCARA 3R

    , , [5],

    [6],

    [7], A Mechatronics

    Approach to the design of light-weight arms and multifingered hands[8]

    .

    . 2

  • 2

    . 3

    . 4

    . 5 .

    6 .

  • 3

    2 2 2 2

    (KUBIR-1) 5

    . 0, 1 DC

    2 DC -

    (gripper) 3, 4

    RC . Fig. 2.1

    .

    (KUBIR-2) .

    6 . 0, 4 DC

    1, 2, 3, 4 4

    . Fig. 2.2 .

    Fig. 2.1 Structure of the KUBIR-1 arm

  • 4

    Fig. 2.2 Structure of the KUBIR-2 arm

  • 5

    2.1

    KUBIR-2

    . ,

    .

    ,

    . KUBIR-2 4

    .

    . Fig. 2.3 .

    Fig. 2.3 Structure of four bar link

  • 6

    1 2 1

    1.5kg 2 3.5kg . Fig. 2.5

    3 Fig. 2.6, 2.7 1 2

    .

    Fig. 2.4 3 dimensional model of the one axis actuator

  • 7

    Fig. 2.5 Structure of the one axis actuator

    Fig. 2.6 Structure of the two axis actuator

  • 8

    2.2

    (KUBIR-2) 173cm, 92kg, 13,

    12, 4 29 .

    CCD 2

    . 6

    yaw-pitch-pitch-pitch-roll-pitch

    (ball screw) 4

    . 6

    yaw-roll-pitch-pitch-pitch-roll

    .

  • 9

    Fig. 2.7 System composition of the KUBIR-2

  • 10

    Table. 2.1 Specification of the KUBIR-2

    Height 160[cm]

    Weight 75[kg]

    Actuator

    Arm

    DC Servo motor + Harmonic speed reducer

    DC Servo motor + Ball screw

    Leg

    DC Servo motor + Harmonic speed reducer

    DC Servo motor + Ball screwHead DC motor

    Control unit

    ArmTMS320LF2407 + Motor DriverLeg

    Head

    Power Capacity

    Arm24V/50AHLeg

    Head

    SensorUSB cam, Tilt sensor, FSR,

    Magnetic sensor, Proximity sensor

    Table. 2.2 Degrees-of-freedom of the KUBIR-2

    HeadNeck 2 DOF

    Eye 1 DOF 2eye = 2DOF

    Arm

    Left 5 DOF(shoulder 2 + elbow 1 + wrist 1)

    Right 5 DOF(shoulder 2 + elbow 1 + wrist 1)

    Hand 1 DOF 2hand = 2DOF

    Leg

    Left 6 DOF(hip 3 + knee 1 + ankle 2)

    Right 6 DOF(hip 3 + knee 1 + ankle 2)

    Waist 1 DOF

    Total 29 DOF

  • 11

    2.3

    76cm, 9kg

    (gripper) 2 (roll-pitch), 1

    (pitch), 2 (pitch-yaw) 6

    .

    (gripper) 4

    , .

    (gripper)

    4 . 4

    DC .

    4 .

    Fig. 2.4 3 .

  • 12

    Fig. 2.8 3 dimensional model of the KUBIR-2 arm

  • 13

    3 3 3 3

    .

    (gripper) (kinematics)

    (jacobian)

    .

    , 5 (manipulator)

    .

    .

    3.1

    (homogeneous transform)

    .

    Denavit Hartenberg(D-H)

    . 4

    .

    =

    100

    0cossin

    0sincos

    ,

    zR

    =

    cossin0

    sincos0

    001

    ,xR

    =

    cos0sin

    010

    sin0cos

    ,yR

    iiii xaxdzziRotTransTransRotA ,,,,=

  • 14

    , , , 4 (parameter).

    (length), (twist),

    (offset), (angle) .

    4 3 1 . ,

    , .

    Fig. 3.1 D-H coordinate frame assignment for the KUBIR-2 arm

    Table 3.1 Link parameter for the KUBIR-2 arm

    Link

    1 90 0

    2 0 0

    3 0 0

    4 0 90 0

    5 0 0

  • 15

    .

    =

    1000

    0010

    sincos0sin

    cossin0cos*

    11*

    1*

    1

    *11

    *1

    *1

    1

    a

    a

    A

    =

    1000

    0100

    sin0cossin

    cos0sincos*22

    *2

    *2

    *22

    *2

    *2

    2

    a

    a

    A

    =

    1000

    0100

    sin0cossin

    cos0sincos*33

    *3

    *3

    *33

    *3

    *3

    3

    a

    a

    A

    =

    1000

    0010

    0cos0sin

    0sin0cos*4

    *4

    *4

    *4

    4

    A

    =

    1000

    100

    00cossin

    00sincos

    5

    *5

    *5

    *5

    *5

    5d

    A

    543210

    5 AAAAAT =

    .

  • 16

    =

    1000333231

    232221

    131211

    50

    z

    y

    x

    prrr

    prrr

    prrr

    T

    11 5 1 4 2 3 2 3 1 4 2 3 2 3 1 5{ ( ) ( )}r c c c c c s s c s s c c s s s= + +

    12 5 1 4 2 3 2 3 1 4 2 3 2 3 1 5{ ( ) ( )}r s c c c c s s c s s c c s s c= + +

    13 1 4 2 3 2 3 1 4 2 3 2 3( ) ( )r c s c c s s c c c c s s= +

    21 5 1 4 2 3 2 3 1 4 2 3 2 3 1 5{ ( ) ( )}r c s c c c s s s s s c c s c s= +

    22 5 1 4 2 3 2 3 1 4 2 3 2 3 1 5{ ( ) ( )}r s s c c c s s s s s c c s c c= +

    23 1 4 2 3 2 3 1 4 2 3 2 3( ) ( )r s s c c s s s c s c c s= + +

    31 5 4 2 3 2 3 4 2 3 2 3{ ( ) ( )}r c c s c c s s c c s s= + +

    32 5 4 2 3 2 3 4 2 3 2 3{ ( ) ( )}r s c s c c s s c c s s= + +

    33 4 2 3 2 3 4 2 3 2 3( ) ( )r c c c s s s s c c s= + +

    , p .

    5 1 4 2 3 2 3 1 4 2 3 2 3 1 1 2 2 3 3 2 3 3 2{ ( ) ( )} ( )xP d c c s c c s c s c c s s c a a c a c c a s s= + + + + +

    5 1 4 2 3 2 3 1 4 2 3 2 3 1 1 2 2 3 3 2 3 3 2{ ( ) ( )} ( )yP d s c s c c s s s c c s s s a a c a c c a s s= + + + + +

    5 4 3 2 2 3 4 2 3 2 3 2 2 3 3 2 3 3 2{ ( ) ( )}zP d s c s c s c c c s s a s a s c a c s= + + + +

  • 17

    3.2

    ,

    .

    5,...,1,10

    )()(

    )(),...,()(

    00

    110

    =

    =

    =

    nqdqR

    qAqAqTnn

    nnn

    (3. 1)

    , .

    ,

    .

    .

    .

    ,

    Tnnn RRS )()( 000 &&= (3. 2)

    . .

    0 0n nv d= & (3. 3)

    , .

  • 18

    5,...,1,)()(,)( === iqqJqRqqJv iTiiivci c

    && (3. 4)

    .

    .

    5,...,1,)(

    1

    1 =

    =

    iz

    OOzJ

    i

    inii

    (3. 5)

    ,

    .

    Fig. 3.1

    .

    ,

    .

  • 19

  • 20

  • 21

    3.3

    Euler-Lagrange , .

    5,...,1,)()()( ==++ kqqqqcqqd kkjiijkj

    jkj &&&& (3. 6)

    . (3. 6)

    2 ,

    1 Coriolis

    ,

    .

    . 5

    Euler-Lagrange

    .

    ( ) ( , ) ( )D q q C q q q q + + =&& & & (3. 7)

    , 155555 )(,),(,)( RqRqqCRqD & .

    .

    ,

    .

  • 22

    .

    .

    .

  • 23

  • 24

    , .

    :

    : ()

    :

    : ()

    : Gripper

    : ()

    :

    Chrostoffel

    Coriolis

    .

    .

  • 25

  • 26

    5

    .

    .

    .

  • 27

    Euler-Lagrange

    .

    . .

  • 28

    3.4

    4

    .

    .

    .

    3.4.1

    Fig. 3.2 Four-bar-link structure for shoulder joint

    4

    Fig. 3.2 .

    . .

  • 29

    . .

    ,

    .

    (3. 8)

    (3. 8) 1 2 .

    (3. 9)

    (3. 10)

    .

    (3. 11)

    .

  • 30

    (3. 12)

    (3. 13)

  • 31

    3.4.2

    Fig. 3.3 Four-bar-link structure for elbow joint

    4 Fig. 3.3

    . .

    .

    . .

    ,

    .

    (3. 14)

    1 2 .

  • 32

    (3. 15)

    (3. 16)

    .

    (3. 17)

    .

    (3. 18)

    (3. 19)

  • 33

    3.4.3

    Fig. 3.4 Four-bar-link structure for wrist joint

    4 Fig. 3.4

    . .

    .

    . .

    ,

    .

    (3. 20)

    1 2 .

  • 34

    (3. 21)

    (3. 22)

    .

    (3. 23)

    .

    (3. 24)

    (3. 25)

  • 35

    3.4.4

    F .

    , ,

    ,

    .

    iiii pF sin= (3.26)

    i , ip .

    )/cos( iii pda= (3.27)22

    2 adp ii +=

    3,2,1=i , , a

    cb, .

    3.4.5

    . ,

    Euler-Lagrange

    . (3.26)

  • 36

    . ,

    5

    Euler-Lagrange (3.6)

    .

    ,

    .

    ( ) ( , ) ( )fH d d Q d d d h d LF+ + =&& & & (3.28),

    3 1( ) ( ) ( ), ( , ) ( , ) ( ) ( )ij ij i ij j jH d D d R d Q d d C d d H d R d d= = +& & &

    . (3.28) L 2

    .

  • 37

    4 4 4 4

    4

    , ,

    . 10kg (gripper)

    . , ,

    .

    ,

    .

    4.1 4

    Fig.

    4.1~4.3 .

    Fig. 4.1 Torque analysis of the shoulder joint

  • 38

    Fig. 4.2 Torque analysis of the elbow joint

    Fig. 4.3 Torque analysis of the wrist joint

    .

    .

  • 39

    1111

    121211

    CosL

    CosLMF

    =

    (4.1)

    2121

    222222

    CosL

    CosLMF

    =

    (4.2)

    3131

    323233

    CosL

    CosLMF

    =

    (4.3)

    , .

    16.7kgf, 13.2kgf, 11.7kgf .

    (4.4) ,

    (4.5) .

    i

    ia Cos

    FF

    =

    (4.4)

    A

    lF baMotorloadi

    =

    2)( (4.5)

    bl , , A

    Table 4.1 .

    Table 4.1 Constants of the load torque in each joint

    Body name

    Lead of ballscrew

    bl [mm]

    Efficiency of ballscrew

    [%]Reduction

    Motor

    Max. continuous torque

    Shoulder 2 mm 90% 1 : 4.3 181Nmm

    Elbow 1 mm 90% 1 : 1.75 94.8Nmm

    Wrist 1 mm 90% 1 : 1.75 94.8Nmm

  • 40

    , (4.5)

    Fig. 4.4~4.6 .

    ,

    .

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -100 -80 -60 -40 -20 0

    q2 (deg)

    Torq

    ue (

    Nm

    m)

    Fig. 4.4 Load torque of the shoulder joint

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -100 -80 -60 -40 -20 0 20

    q3 (deg)

    Torq

    ue (

    Nm

    m)

    Fig. 4.5 Load torque of the elbow joint

  • 41

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -60 -40 -20 0 20 40 60

    q4 (deg)

    Torq

    ue (

    Nm

    m)

    Fig. 4.6 Load torque of the wrist joint

    Fig. 4.4~4.6

    .

    .

  • 42

    5 5 5 5

    CATIA ANSYS

    . ,

    .

    1kg

    10kg 1kg .

    5.1

    SOLID ,

    BEAM .

    4

    .

    Fig. 5.1 .

    Fig. 5.1 Finite element model

  • 43

    (AL6061) .

    Table 5.1 ,

    Table 5.2 .

    Table 5.1 Material property

    Elastic

    Modulus()

    Tensile

    Strength()Poisson's Ratio Density()

    AL6061 68.9 225 0.35 2710

    Table 5.2 Element type and number

    SOLID 104642 283229

    BEAM 360 691

    5.2

    1kg 10kg 1kg

    . FEM

    Table 5.2 , Fig. 5.2 10kg

    .

    Table 5.3 Displacement FEM of the KUBIR-2 arm

    Weight(kg) Displacement(mm)

    1 1.47

    2 2.94

    3 4.43

    4 5.93

    5 7.42

    6 8.92

    7 10.41

    8 11.9

    9 13.4

    10 14.76

  • 44

    Fig. 5.2 FEM result of KUBIR-2 arm

  • 45

    5.3

    (gripper) 1kg 10kg

    1kg

    . Pic. 5.1 .

    Pic. 5.1 Experimental setup of the KUBIR-2 arm for displacement measure

    5.4

    Table 5.3 ,

    .

    Table 5.4 .

  • 46

    Table 5.4 Experiment result of displacement of the KUBIR-2 arm

    Weight(kg) Displacement(mm)

    1 3

    2 6

    3 8

    4 11.5

    5 13.5

    6 16

    7 18

    8 21

    9 23

    10 26

    Table 5.5 Adjusted displacement by servo motor

    Weight(kg)Wrist

    (pulse)

    Elbow

    (pulse)

    Shoulder

    (pulse)

    Displacement of

    gripper(mm)

    1 46.4 80 566.7 1.53

    2 92.7 160.7 1133.3 3.05

    3 104.3 180.9 1275 3.42

    4 150.6 261.5 1841.7 4.94

    5 185.4 322 2266.7 6.08

    6 208.6 362.4 2550 6.84

    7 231.7 402.7 2833.3 7.59

    8 278 483.3 3400 9.1

    9 289.6 503.5 3541.7 9.49

    10 336 584.18 4108.3 11

  • 47

    . Fig. 5.3 .

    FEM .

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 5 10 15

    Carrying weight (kg)

    Dis

    pla

    cem

    ent (m

    m)

    FEM analysis

    Experiment

    Fig. 5.3 Comparison result of FEM analysis and experiment

  • 48

    6 6 6 6

    .

    (closed chain)

    .

    9kg ,

    10kg .

    . ,

    ,

    ,

    .

    .

    ANSYS

    ,

    .

    .

    FEM

    .

  • 49

    [1] http://asimo.honda.com/

    [2] K. Harada, et al, A Humanoid Robot Carrying a Heavy Object, Proc. IEEE

    International Conf. on Robotics and Automation, pp. 1724-1729, 2005.

    [3] J.H Kim, S.W Park, I.W Park, and J. H. Oh, Development of a Humanoid

    Biped Walking Robot Platform KHR-1 - Initial Design and Its Performance

    Evaluation, in Proceedings of 3rd IARP Int.Workshop on Humanoid and Human

    Friendly Robotics, pp. 14-21, Tsukuba, Japan, Dec. 2003.

    [4] , ,

    , 15 2, pp. 523-536, 1991.

    [5] , , , , ,

    15 2, pp. 515-522, 1991.

    [6] , , ,

    1 1, pp. 178-181, 1991.

    [7] , , , , ,

    10 5, pp. 611-617, 1986.

    [8] G. Hirzinger, J. Batterfag, M. Fischer, M. Grebenstein, M. Hahnle, H. Liu, I.

    Schaefer, and N. Sporer, "A Mechatronics Approach to the Design of Light

    Weight Arms and Multi-Singered Hands", ICRA, pp. 46-54, 2000.

    [9] , , , KSME 25 ,

    1 2 2.1 2.2 2.3

    3 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5

    4 4.1 4

    5 5.1 5.2 5.3 5.4

    6