45
RTO RTCVD poly RTCVD nitride Clean Module Load lock ellipso- meter foup NTU GIEE NanoSiOE 1 金金金金金金金金金金 金金金金金金金金金金 金金金金 金金金金 Metal Gate and Ge on Insu Metal Gate and Ge on Insu lator Process lator Process 金金金金 金金金 金金 金金 金金金 金金金金金金金金金金金金

金屬閘極與絕緣層上鍺 晶圓製程 Metal Gate and Ge on Insulator Process

  • Upload
    slade

  • View
    49

  • Download
    2

Embed Size (px)

DESCRIPTION

金屬閘極與絕緣層上鍺 晶圓製程 Metal Gate and Ge on Insulator Process. 指導教授:劉致為 博士 學生:李呈峻 臺灣大學電子工程學研究所. Outline. Introduction The Electrical Characteristics of Tantalum Nitride Metal Gate Ge-on-Insulator Substrates Formation by Wafer Bonding and Layer Transfer - PowerPoint PPT Presentation

Citation preview

Page 1: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE1

金屬閘極與絕緣層上鍺金屬閘極與絕緣層上鍺晶圓製程 晶圓製程

Metal Gate and Ge on Insulator Metal Gate and Ge on Insulator ProcessProcess

指導教授:劉致為 博士學生:李呈峻

臺灣大學電子工程學研究所

Page 2: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE2

OutlineOutline• IntroductionIntroduction• The Electrical Characteristics of Tantalum The Electrical Characteristics of Tantalum Nitride Metal GateNitride Metal Gate• Ge-on-Insulator Substrates Formation by WaferGe-on-Insulator Substrates Formation by Wafer

Bonding and Layer Transfer Bonding and Layer Transfer • A Novel 850 nm, 1.3μm and 1.5μm GOI MOSA Novel 850 nm, 1.3μm and 1.5μm GOI MOS

Photodetector for Optical Communication Photodetector for Optical Communication • SummarySummary

Page 3: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE3

ITRS 2001 ASIC-HP Near Term Long Term

Calendar Year 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016Technology Node 130nm 90nm 65nm 45nm 32nm 22nm

Ph. GL (nm) 65 53 45 37 32 28 25 18 13 9EOT (nm) 1.3-1.6 1.2-1.5 1.1-1.6 0.9-1.4 0.8-1.3 0.7-1.2 0.6-1.1 0.5-0.8 0.4-0.6 0.4-0.5Elec. Thick. Adjust. Factor 0.8 0.8 0.8 0.8 0.8 0.8 0.5 0.5 0.5 0.5Vdd (V) 1.2 1.1 1.0 1.0 0.9 0.9 0.7 0.6 0.5 0.4Ioff (uA/um) 0.01 0.03 0.07 0.1 0.3 0.7 1 3 7 10Ion (uA/um) 900 900 900 900 900 900 900 1200 1500 1500Tech. Improvement 0 0 0 0 0 0 0 30% 70% 100%Parasitic S/D Rsd (ohm-um) 190 180 180 180 180 170 140 110 90 80Parasitic S/D Rsd percent (Vdd/Idd) 16% 16% 17% 18% 19% 19% 20% 25% 30% 35%CV/I (ps) 1.65 1.35 1.13 0.99 0.83 0.76 0.68 0.39 0.22 0.15Device Performance 1.0 1.2 1.5 1.6 2.0 2.1 2.5 4.3 7.2 10.7Energy of Switching Transition (fJ /Device) 0.347 0.212 0.137 0.099 0.065 0.052 0.032 0.015 0.007 0.002Static Power Dissipat. (Watts/Device) 6E-09 7E-09 1E-08 1E-08 3E-08 5E-08 5E-08 1E-07 1E-07 1E-07

Intern’l Technology Roadmap for Intern’l Technology Roadmap for Semiconductors-- ITRSSemiconductors-- ITRS

Page 4: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE4

Problems in conventional poly silicon gate (poly-Si)• High gate resistance• High gate tunneling leakage current• Poly silicon gate depletion• Boron penetration into the channel region

Solution• Metal gate

Why metal gate ?Why metal gate ?

Page 5: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE5

Pure Metal Work FunctionsPure Metal Work FunctionsThe work-function with various pure metals.

The band gap of silicon that between the conduction band (Ec) and valence band (Ev) is 1.12eV at room temperature.

Page 6: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE6

Why tantalum metal is suitable for Why tantalum metal is suitable for semiconductor industry?semiconductor industry?

• Advantages• Body-centered-cubic (BCC) crystal structure• High melting point(2996 )℃• Low-resistance ohmic contact

Cubic, Body Centered Cubic, Face CenteredFor instance, Al, Pt and Cu

Page 7: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE7

OutlineOutline

• IntroductionIntroduction• The Electrical Characteristics of Tantalum Nitride The Electrical Characteristics of Tantalum Nitride

Metal GateMetal Gate• Ge-on-Insulator Substrates Formation by Wafer Ge-on-Insulator Substrates Formation by Wafer

Bonding and Layer TransferBonding and Layer Transfer• A Novel 850nm, 1.3μm, and 1.5μm GOI MOS A Novel 850nm, 1.3μm, and 1.5μm GOI MOS

Photodetector for Optical CommunicationPhotodetector for Optical Communication• SummarySummary

Page 8: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE8

Alloy Work FunctionsAlloy Work Functions

Page 9: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE9

Experiment Process FlowExperiment Process Flow

P-type silicon(100)

Silicon dioxideTaNPt

P-type silicon(100)

P-type silicon(100)

TaNSilicon dioxide

Pt

P-type silicon(100)

Silicon dioxideTaN

P-type silicon(100)

Silicon dioxide

1. P-type silicon wafer(100)2. RCA cleaning3. HF dipped 1min

4. Tetraethoxysilane (TEOS) oxide 10nm,21nm,33nm

5. TaN 200nm deposition by sputter

6. Pt 50nm deposition by E-gun

7. Wet etching using NaOH

TaNSilicon dioxide

Pt

P-type silicon(100)

Al contact

8. Dipped BOE 1min.9. Al contact 200nm deposition

Page 10: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE10

C-V Curves of TaN with PMA 400℃C-V Curves of TaN with PMA 400℃

Before N2 Annealing After N2 Annealing

After PMA 5minutes in 400 , the interface traps of TaN gate device ℃ are significantly reduced by heat treatment.

Page 11: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE11

Calculation of Flat-Band VoltageCalculation of Flat-Band Voltage

Cox

Csi Cde Cin

Vg < Vfb

Cox

P-type substrate

TaN

Silicon dioxide

Pt

P-type silicon(100)

Al contact

Vg > Vfb

Accumulation Inversion

Gate

-6 -4 -2 0 2 4

0.00E+000

2.00E-011

4.00E-011

6.00E-011

8.00E-011

1.00E-010

1.20E-010

1.40E-010

TaN_25:10_Pattern_PMA_400C_5min

Cs(

F)

Vg(V)

1M 500K 100K 10K 1K 500 100

Cox , Vg, A as known

ox

D

OXfb

tL

CC

1

Here LD was the Debye length defined Ndq

kTL SiD 2

Vfb

Vfb

Cfb

CsiCox

CsiCox

dVg

QsdC

)(

max

Page 12: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE12

Flat-Band Voltages Versus Silicon Flat-Band Voltages Versus Silicon Dioxide ThicknessDioxide Thickness

OX

OXsmfb C

QV

Page 13: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE13

The VFB converge to a specific value (i.e. -0.42V) when the N2 flow rate is upto abut twenty.

Flat-Band Voltages Versus Nitrogen Flow Flat-Band Voltages Versus Nitrogen Flow RatioRatio

Page 14: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE14

Work Functions of Tantalum NitrideWork Functions of Tantalum Nitride

OX

OXTaNOXAlOXTaNFBAlFBAlmTaNm

TaNFBAlFBOX

OXTaNOXAlOXTaNmAlm

tQQVV

VVt

QQ

,,,,,,

,,,,,,

Page 15: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE15

The C-V Curves Dispersion After The C-V Curves Dispersion After PMA 900 20sec℃PMA 900 20sec℃

After PMA 900C 20sec, the Cox of TaN gate devices continues to decrease as nitrogen flow ratio.

Page 16: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE16

The Value of Cox Dispersion After The Value of Cox Dispersion After PMA 900 20sec℃PMA 900 20sec℃

If nitrogen gas flow ratio is higher than thirteen percents, the Cox dispersion phenomenon is obviously.

Page 17: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE17

The TaN Gate Analysis of Auger The TaN Gate Analysis of Auger Microprobe Microprobe

-5000

0

5000

10000

15000

1 2 3 4 5 6 7 8 9 10 11 12

Counts

Etch Level

Peak Height Profile

NKL1OKL1PTMN2SIKL1TAMN3

-50000

0

50000

100000

150000

1 2 3 4 5 6

Cou

nts

Etch Level

Peak Height Profile

Nkl1Okl1ptmn2sikl1talm3

After PMA 900 20sec ℃After PMA 400 5min ℃ With increasing nitrogen gas flow ratio, the thermal stability

decreased by tantalum diffusion into dielectric layer.

Page 18: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE18

OutlineOutline

• IntroductionIntroduction• The Electrical Characteristics of Tantalum Nitride The Electrical Characteristics of Tantalum Nitride

Metal GateMetal Gate• Ge-on-Insulator Substrates Formation by Wafer Ge-on-Insulator Substrates Formation by Wafer

Bonding and Layer TransferBonding and Layer Transfer• A Novel 850nm, 1.3μm, and 1.5μm GOI MOS A Novel 850nm, 1.3μm, and 1.5μm GOI MOS

Photodetector for Optical CommunicationPhotodetector for Optical Communication• SummarySummary

Page 19: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE19

Roadmap for GOI ProcessRoadmap for GOI Process

TRIM SimulationPage 24&25.

Direct Wafer BondingPage 20.

Hydrogen Induced Exfoliation of Ge

Page 22.

Cross section and Surface Roughness of GOI substrates

Page 26.

GOI Surface Roughness Reduction Page 27&28&29.

GOI Wafer FormationPage 21.

GOI Smart-CutProcess FlowPage 23. Bulk Si

BPSG 600nmGe 1460nm

Page 20: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE20

Direct Wafer BondingDirect Wafer Bonding Megasonic acoustic cleaning KOH cleaning

KOH:H20DI water rinseHydrophilic surface (OH-)

SC1 cleaningNH4OH:H2O2:H2ODI water rinseHydrophilic surface (OH-)

Pre-bondingAlignmentForm a single bonding wave

High temperature treatment6500C, O2, 30minStrength the chemical bonds

Host wafer(Ge wafer)

Handle wafer(Si wafer)

BPSG

Host wafer(Ge wafer)

Handle wafer(Si wafer)

BPSG

OH-

Host wafer(Ge wafer)

OH- OH-OH-OH- OH-

Handle wafer(Si wafer)

BPSGOH- OH- OH-OH-OH- OH-

OH- OH- OH-OH-OH- OH-

OH- OH- OH-OH-OH- OH- OH-

Page 21: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE21

The scanning electron microscopy (SEM) picture of a Ge wafer bonds to another Si wafer capped with 600 nm BPSG.

GOI Wafer FormationGOI Wafer Formation

Ge

BPSG

Si

Wafer Bonding Without Smart-cutWafer Bonding Without Smart-cut

Page 22: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE22

The hydrogen-induced exfoliation of The hydrogen-induced exfoliation of Germanium Germanium

BPSG

Handle wafer(Si wafer)

Ge

Host wafer(Ge wafer)

BPSG

Handle wafer(Si wafer)

Host wafer(Ge wafer)

CracksRp Rp

650℃

Formation of point defect in the lower concentration of hydrogen implant. Rearrangement of the defect structure above 650℃. H2 trap in the microvoids. Development of these microvoids into cracks leading to complete layer transfer.

Page 23: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE23

GOI Smart Cut Process FlowGOI Smart Cut Process Flow

Host waferBulk Ge

Ge

BPSG

Handle wafer

Ge

BPSG

Handle wafer

Host waferH+ H+ H+ H+H+ H+ H+

1). Hydrogen implantation

2). Hydrophilic bonding at low temperature

3). Splitting annealing

4). Polishing

Host wafer Bulk Ge

BPSG

Handle wafer

Ion Implant (Hydrogen Dose 1E17) Megasonic acoustic cleaning

Direct Wafer Bonding KOH Cleaning SC1 Cleaning Pre-bonding

H Induced Layer Transfer High temperature treatment (650 30min in Oxygen gas)℃

Surface Roughness Reduction High temperature annealing (825 60min in hydrogen gas)℃

Page 24: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE24

Ion Implantation DepthIon Implantation Depth

The hydrogen implant depth in Ge vs. implant energy. The longitudinal Straggle in Ge vs. implant energy.

Page 25: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE25

TRIM SimulationTRIM Simulation The concentration profile of hydrogen atoms is simulated by TRIM. The hydrogen implant into germanium with 200KeV implant energy.

Page 26: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE26

Ge

BPSG

Handle wafer(Si wafer)

Ge

SiBPSG

rough

The surface of GOI substrate is rough after smart cut process. The thin germanium layer (i.e. 1.46μm) transfers upon BPSG.

SEM of GOI After Smart Cut ProcessSEM of GOI After Smart Cut Process

Page 27: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE27

GOI surface Roughness-mean-square(RMS)~97nm.

After GOI annealed in furnace 825 with℃forming gas , GOI surface roughness reduced to RMS~27nm.

No Annealing With Annealing in F. G.

Microroughness Measurement After Smart-cutMicroroughness Measurement After Smart-cut

Page 28: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE28

After GOI annealed in furnace 825 ℃with N2 gas , GOI surface roughness reduced to RMS~62nm.

After GOI annealed in RTP 825 ℃with H2 gas , GOI surface roughness reduced to RMS~43nm.

With Annealing in N2 With Annealing in H2

Microroughness Measurement After Smart-cutMicroroughness Measurement After Smart-cut

Page 29: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE29

GOI Surface Roughness ReductionGOI Surface Roughness Reduction Surface microroughness of Ge-on-insulator with different kind of gas,

for an hour annealing at 825 in furnace. ℃

Page 30: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE30

OutlineOutline

• IntroductionIntroduction• The Electrical Characteristics of Tantalum Nitride The Electrical Characteristics of Tantalum Nitride

Metal GateMetal Gate• Ge-on-Insulator Substrates Formation by Wafer Ge-on-Insulator Substrates Formation by Wafer

Bonding and Layer TransferBonding and Layer Transfer• A Novel 850 nm, 1.3μm and 1.5μm GOI MOS A Novel 850 nm, 1.3μm and 1.5μm GOI MOS

Photodetector for Optical CommunicationPhotodetector for Optical Communication• SummarySummary

Page 31: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE31

GOI Smart-Cut at Low Temperature Splitting

AnnealingPage 32.

GOI MOS PhotodetectorProcess FlowPage 35.

Liquid Phase

Deposition

Current Reduction by Metal Technique

Page 34.

Cross section and Surface

Roughness of GOI substrates

Page 33.

Bulk Si

Thermal oxide 80nmGe 800nmLPD oxide AlAl

Pt

Dark and Photocurrent with different light source

Page 37&38.

Responsivity and Efficiency

Page 39.

Impulse Response and Bandwidth

Page 40&41.

Cross section GOI MOS Photodetector

Page 36.

Roadmap for GOI PhotodetectorRoadmap for GOI Photodetector

Page 32: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE32

GOI Smart Cut at Low Temperature GOI Smart Cut at Low Temperature Splitting AnnealingSplitting Annealing

Host wafer(Bulk Ge)

Ge

Thermal oxide

Handle wafer(Bulk Si)

Ge

Thermal oxide

Handle wafer(Bulk Si)

Host wafer(Bulk Ge)

H+ H+ H+ H+H+ H+ H+

1). Hydrogen implantation

2). Hydrophilic bonding at low temperature

3). Splitting annealing

4). Polishing

Host wafer (Bulk Ge)

Thermal oxide

Handle wafer(Bulk Si)

Ion Implant (Hydrogen Dose 1E17) Megasonic acoustic cleaning

Direct Wafer Bonding KOH Cleaning SC1 Cleaning Pre-bonding

H Induced Layer Transfer Low temperature splitting annealing (150 12hr in 10% Oxygen gas)℃

Page 33: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE33

Low Temperature Splitting Low Temperature Splitting AnnealingAnnealing

After low temperature splitting annealing 150 with N℃ 2 gas , GOI surface roughness is around 6.6nm (r.m.s).

After splitting annealing, the germanium layer thickness is 800nm.

Ge 800nm

Si

SiO280nm

After splitting, the microroughness of Ge-on-insulator substrate. The cross-section SEM image of Ge-on-insulator substrate.

Page 34: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE34

Current Reduction by Metal TechniqCurrent Reduction by Metal Technique ue

Al

3.1e

V

5.2eV

traps

Hole current

Ge N(100)EF

Electron current

Pt

4.3e

V

5.2eV

traps

Hole current

Ge N(100)EF

Electron current

EC

EV

EF

5.2eV

4.3e

V

Pttraps

Ge N(100)

Electron current

Hole current

EC

EV

EF

5.2eV

3.1e

V

Al

traps

Ge N(100)

Electron current

Hole current

Device Area = 3x10-4 (cm2)Pt is good selection for Ge N(100).

Page 35: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE35

GOI Photodetector Process FlowGOI Photodetector Process Flow

Ion implant (hydrogen dose=1E17).

Direct Wafer bonding.H induced layer transfer.

(150 12Hr in 10% Oxygen)℃Liquid Phase Deposition.Gate electrode fabrication.

(Pt gate and Al contact)

Host waferBulk Ge

GeThermal oxide

Handle wafer(Si wafer)

Host wafer(Ge wafer)

H+ H+ H+ H+H+ H+ H+

1). Hydrogen implantation 3). Splitting annealing

OH-

Host wafer(Ge wafer)

OH- OH-OH-OH- OH-

Handle wafer(Si wafer)

Thermal oxideOH- OH- OH-OH-OH- OH-

2). Surface cleaning and hydrophilic bonding at low

temperature

Al Contact

Pt Pattern

Top view

5). GOI detector fabrication

Bulk Si

Thermal oxide 80nmGe 800nm

LPD oxide 1.6nm

4). Liquid Phase Depositon

Bulk Si

Thermal oxide 80nmGe 800nmLPD oxide AlAl

Pt

Page 36: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE36

GOI Photodetector FormationGOI Photodetector Formation

Bulk Si

Thermal oxide 80nm

Ge 800nm

LPD oxide Pt 25nm

Ge800nm

Thermal oxide 80nm

Si

Pt LPD

The cross-section TEM image of Ge-on-insulator PMOS devices.

Page 37: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE37

Photocurrent Under 850nm Light Photocurrent Under 850nm Light SourceSource

The dark and photocurrent of the GOI PMOS detector exposures to 850nm lightwave with different light intensity.

Responsivity = 0.2 ~ 0.3 (A/W)GOI PMOS Photodetector

Responsivity = 0.2 (A/W)Bulk Ge MOS detector

Page 38: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE38

Photocurrent under 1300 and 1550 Photocurrent under 1300 and 1550 nm light sourcenm light source

Responsivity = 0.2 (A/W)

The dark and photocurrent of the GOI PMOS detector exposures to 1300nm and 1550 nm lightwave with different light intensity.

Responsivity = 0.06 (A/W)

Page 39: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE39

Responsivity and EfficiencyResponsivity and Efficiency The responsivity of GOI PMOS detector exposures to 850nm, 1.3μm, and 1.5μm

lightwave with different light intensity. The quantum efficiency (η) of the GOI photodetectors versus power under different

lasers exposure.

hP

eI s/

/

Page 40: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE40

Impulse Response Bulk Ge DetectorImpulse Response Bulk Ge Detector The Full-Width Half-Maximum (FWHM) is 722 ps for the typical Ge MOS detector

under 850nm pulse measurement. After fast fourier transform (FFT), the -3 dB bandwidth can be obtained about

340 MHz.

Page 41: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE41

Impulse Response GOI DetectorImpulse Response GOI Detector The Full-Width Half-Maximum (FWHM) is 543 ps for the typical Ge MOS detector

under 850nm pulse measurement. After fast fourier transform (FFT), the -3 dB bandwidth can be obtained about

340 MHz. The 60% enhancement is achieved with -3 dB bandwidth, comparing to bulk

Ge MOS detector. Since some of diffusion current is eliminated in GOI MOS photodetectors,

the speed and bandwidth of the device increases.

Page 42: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE42

OutlineOutline

• IntroductionIntroduction• The Electrical Characteristics of Tantalum Nitride The Electrical Characteristics of Tantalum Nitride

Metal GateMetal Gate• Ge-on-Insulator Substrates Formation by Wafer Ge-on-Insulator Substrates Formation by Wafer

Bonding and Layer TransferBonding and Layer Transfer• A Novel 850nm, 1.3μm, and 1.5μm GOI MOS A Novel 850nm, 1.3μm, and 1.5μm GOI MOS

Photodetector for Optical CommunicationPhotodetector for Optical Communication• SummarySummary

Page 43: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE43

SummarySummary

Tantalum Nitride Metal Gate• In experiment, we obtained that the oxide charges are positive in TEOS and the

flat-band voltages concentrated -0.42V at twenty percents nitrogen flow ratio.

• With increasing nitrogen gas flow ratio, the thermal stability decreased by tantalum diffusion into dielectric layer.

• If nitrogen gas flow ratio is higher than thirteen percents, the tantalum diffusion

phenomenon is obviously.

Ge-on-Insulator substrates Formation• The GOI surface roughness is reduced by thermal rapid annealing with hydrogen

gas in furnace.

• The bonding condition of low temperature heat treatment is at 150 with 10% ℃oxygen flow in furnace.

Page 44: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE44

SummarySummary

GOI MOS Photodetector • The leakage current is decreased at inversion bias by platinum gate electrode.

• The novel GOI PMOS photodetectors have high responsivity (0.3 A/W) and high quantum efficiency of 40% at 850nm (0.25mW).

• The 60% enhancement is achieved with -3 dB bandwidth, comparing to bulk Ge MOS detector.

Page 45: 金屬閘極與絕緣層上鍺 晶圓製程  Metal Gate and Ge on Insulator Process

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE45

Future WorkFuture Work• The RF pattern can be designed to enhance the speed (3-dB bandwidth) of

GOI MOS photodetectors.

• The thickness of germanium layer on insulator can be designed for fabricating resonant-cavity-enhanced (RCE) photodetectors to increase the bandwidth-efficiency.