28
T. Abe (CNS, U. of Tokyo) T. Abe (CNS, U. of Tokyo) in collaboration with in collaboration with R. Seki (CSUN & KRL, Caltech) R. Seki (CSUN & KRL, Caltech) Thermal properties of neutron matter Thermal properties of neutron matter by lattice calculation with NN effective field by lattice calculation with NN effective field theory theory at the next-to-leading order at the next-to-leading order 高高高高高高高高高高高高高 高高高高高高高高高高高高高 高高高高高高高高高 高高高高高高高高高 Nov. 20, 2007 Nov. 20, 2007 KEK KEK 高高高 高高高 高高高高高高 高高高高高高 「・ 高高高 高高高 高高高高高高 高高高高高高 「・ RCNP RCNP 高高高 高高高高高高高高高 高高高高高 高高高高高高高高 「」 高高高 高高高高高高高高高 高高高高高 高高高高高高高高 「」 高高高高高高高高高高高高高 高高高高高高高高高高高高高 Dec. 15, 2007 Dec. 15, 2007

高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

  • Upload
    terah

  • View
    56

  • Download
    7

Embed Size (px)

DESCRIPTION

RCNP 研究会 「核子と中間子の多体問題の統一的描像に向けて」. KEK  研究会 「原子核・ハドロン物理:横断研究会」. Thermal properties of neutron matter by lattice calculation with NN effective field theory at the next-to-leading order. T. Abe (CNS, U. of Tokyo) in collaboration with R. Seki (CSUN & KRL, Caltech). 高エネルギー加速器研究機構 素粒子原子核研究所 - PowerPoint PPT Presentation

Citation preview

Page 1: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

T. Abe (CNS, U. of Tokyo)T. Abe (CNS, U. of Tokyo)

in collaboration within collaboration with

R. Seki (CSUN & KRL, Caltech)R. Seki (CSUN & KRL, Caltech)

Thermal properties of neutron matter Thermal properties of neutron matter by lattice calculation with NN effective field theory by lattice calculation with NN effective field theory

at the next-to-leading orderat the next-to-leading order

高エネルギー加速器研究機構高エネルギー加速器研究機構素粒子原子核研究所素粒子原子核研究所

Nov. 20, 2007Nov. 20, 2007

KEKKEK 研究会 「原子核・ハドロン物理:横断研究会」 研究会 「原子核・ハドロン物理:横断研究会」   RCNP RCNP 研究会 「核子と中間子の多体問題の統一的描像に向けて」研究会 「核子と中間子の多体問題の統一的描像に向けて」

大阪大学核物理研究センタ大阪大学核物理研究センターー

Dec. 15, 2007Dec. 15, 2007

Page 2: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

OutlineOutline

1.1. MotivationMotivation

2.2. Formulation: NN EFT on the LatticeFormulation: NN EFT on the Lattice

3.3. LO calc. (cLO calc. (c00 only): only):

a.a. 11SS00 Pairing Gap @ T ~ 0 in Thermodynamic & Continuum Limits Pairing Gap @ T ~ 0 in Thermodynamic & Continuum Limits

b.b. Phase Diagram of Low-Density Neutron Matter in Thermodynamic & Phase Diagram of Low-Density Neutron Matter in Thermodynamic & Continuum Limits Continuum Limits

4.4. NLO calc. (cNLO calc. (c00 & c & c22): Preliminary Results & Comparisons w/ LO ): Preliminary Results & Comparisons w/ LO calc.calc.

a.a. 11SS00 Pairing Gap @ T ~ 0 in Ns = 4 Pairing Gap @ T ~ 0 in Ns = 43 3 & n = 1/4& n = 1/4

b.b. Phase Diagram of Neutron Matter in Ns = 4Phase Diagram of Neutron Matter in Ns = 433 & n = 1/4 & n = 1/4

5.5. Summary & OutlookSummary & Outlook

Page 3: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• D. J. Dean & M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003)

kF ~ 1.68 fm-1 (ρ ~ 0.16 fm-3)

for neutron matter

Polarization effects

BCS calc

BCS gap equation

• 11SS00 Pairing gap Pairing gap △ △ (Neutron Matter)(Neutron Matter)1.1. MotivationMotivation

Page 4: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

1.1. MotivationMotivation

• Thermal PropertiesThermal Properties (Low-density Neutron Matter) (Low-density Neutron Matter)

- - 11SS00 Pairing Gap Pairing Gap

- Phase Diagram- Phase Diagram

Normal-to-Superfluid Phase Transition

Tc(Tc(ρρ))

△△(T~0)(T~0)

• Calculation MethodCalculation Method

Lattice FrameworkLattice Framework

Quantum Monte Carlo Quantum Monte Carlo (QMC)(QMC)

Hybrid Monte Carlo (HMC)Hybrid Monte Carlo (HMC)

Nucleon-Nucleon Nucleon-Nucleon

Effective Field TheoryEffective Field Theory

(NN EFT)(NN EFT)

++

Page 5: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

2.2. Formulation: NN EFT on the LatticeFormulation: NN EFT on the Lattice - Effective Field Theory (EFT) - Effective Field Theory (EFT)

low-energy physics long-distance dynamics

- Nucleon-Nucleon Effective Field Theory (NN EFT)- Nucleon-Nucleon Effective Field Theory (NN EFT)

Symmetries of underlying theory (QCD)Symmetries of underlying theory (QCD) Low-energy theory with the relevant degrees of freedom (N, π, etc.) based on the relevant symmetries of the underlying theory (QCD) in low-energy physics

(Lorentz, parity, time-reversal etc.)

- Power counting- Power counting

Systematic expansion in powers of p / Q (p: long-distance scale, Q: short-distance scale)

Coupling constants Experimental data (phase shift …) • connection to the underlying theory (QCD)connection to the underlying theory (QCD)• systematic improvement of the calculationssystematic improvement of the calculations

Page 6: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• Non-relativistic HamiltonianNon-relativistic Hamiltonian

w/

• Non-relativistic Lattice HamiltonianNon-relativistic Lattice Hamiltonian

c.f.) Attractive Hubbard Modelc.f.) Attractive Hubbard Model

Extended Attractive Hubbard Model Extended Attractive Hubbard Model

2.2. Formulation Formulation

cc00 (LO) (LO)cc00 & c & c22 (NLO) (NLO)

Page 7: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• K (reaction) MatrixK (reaction) Matrix

• Potential TermsPotential Terms

Effective Range Expansion on the LatticeEffective Range Expansion on the Lattice

Luscher’s method ~ K matrix with asymptotically standing-wave boundary conditionLuscher’s method ~ K matrix with asymptotically standing-wave boundary condition

• R. Seki, & U. van Kolck, Phys. Rev. C 73, 044006 (2006)

Page 8: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• R. Seki, & U. van Kolck, Phys. Rev. C 73, 044006 (2006).

Observables(a0, r0)

Coupling Constants & Regularization Scale(c0, c2, …, Λ(~π/a))

where

Page 9: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

3.3. LO calc. (cLO calc. (c00 only) only)

Page 10: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• Calculation MethodsCalculation Methods

- Detarminantal Quantum Monte Carlo (DQMC) w/ MDS technique- Detarminantal Quantum Monte Carlo (DQMC) w/ MDS technique - Hybrid Monte Carlo (HMC)- Hybrid Monte Carlo (HMC)

Set upSet up

• Parameter set upParameter set up

- k- kFF = 15, 30, 60 MeV = 15, 30, 60 MeV

- N- Ntt = 2 – 128 = 2 – 128 (for observing the phase transition)(for observing the phase transition)

- N- Nss = 4 = 433, 6, 633, 8, 83 3 (DQMC), (DQMC), && 10 103 3 (HMC) (HMC) (for taking the thermodynamic limit)(for taking the thermodynamic limit)

- n = 1/16, 1/8, 3/16 1/4, 3/8, - n = 1/16, 1/8, 3/16 1/4, 3/8, && 1/2 1/2 (for taking the continuum limit)(for taking the continuum limit)

sample # ~ 2,000 – 10,000 with 50 – 100 thermalization stepssample # ~ 2,000 – 10,000 with 50 – 100 thermalization steps

Performed @ NERSC Seaborg, Bassi & Titech GRID, TSUBAMEPerformed @ NERSC Seaborg, Bassi & Titech GRID, TSUBAME

Page 11: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

3.3. Results & DiscussionsResults & Discussions

• S-wave Pair Correlation FunctionS-wave Pair Correlation Function

w/ S-wave pair field S-wave pair field & # of spatial lattice sites # of spatial lattice sites

• Estimation of Estimation of ΔΔ

a. a. 11SS00 Pairing Gap @ T ~ 0 Pairing Gap @ T ~ 0kF = 0.15 fm-1(30 MeV)

a = 12.82 fm

t = 0.1261 MeV

Ns = 83

• M. Guerrero, G. Ortiz, & E. Gubernatis, Phys. Rev. B M. Guerrero, G. Ortiz, & E. Gubernatis, Phys. Rev. B 6262, 600 (2000), 600 (2000)

• Matrix-decomposition Matrix-decomposition

Stabilization MethodStabilization Method

Page 12: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

kF = 0.3 fm-1(60 MeV)

Ns = 63

continuum limitcontinuum limit

n -> 0 (a -> 0)n -> 0 (a -> 0)

thermodynamic limitthermodynamic limit

N -> ∞N -> ∞

11SS00 pairing gap △ in thermodynamic & continuum limits pairing gap △ in thermodynamic & continuum limits

Page 13: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen & E. Osnes, Nucl. Phys. A 604, 446 (1996)Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen & E. Osnes, Nucl. Phys. A 604, 446 (1996)• J. Wambach, T. L. Ainsworth & D. Pines, Nucl. Phys. A 555, 128 (1993)J. Wambach, T. L. Ainsworth & D. Pines, Nucl. Phys. A 555, 128 (1993)

BCS calcBCS calc

w/ polarization effectsw/ polarization effects

11SS00 pairing gap △ in thermodynamic & continuum limits pairing gap △ in thermodynamic & continuum limits

• T. Abe & R. Seki, arXiv:07082523 T. Abe & R. Seki, arXiv:07082523

Page 14: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• A. Fabrocini, S. Fantoni, A. Y. Illarionov, & K. E. Schmidt, PRL 95, 192501 (2005)• J. Carlson, Nucl. Phys. A 787, 516c-523c (2007); A. Gezerlis & J. Carlson, arXiv:0711.3006 (2007)• T. Abe & R. Seki, arXiv:0708.2523 (2007)T. Abe & R. Seki, arXiv:0708.2523 (2007)

Lattice EFTLattice EFT

Page 15: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• the size of △the size of △

no evidence of significant suppression of △no evidence of significant suppression of △

kkFF [MeV] [MeV] ρρ △△MCMC [MeV] [MeV] △△MFMF [MeV] [MeV] △△MCMC /△ /△MF MF

15 ~ 9 x 10-5 ρρ0 0.0207(9) 0.029680.02968 0.70(2)0.70(2)

30 ~ 7 x 10-4 ρρ0 0.127(5)0.127(5) 0.19380.1938 0.66(2)0.66(2)

60 ~ 6 x 10-3 ρρ0 0.62(2)0.62(2) 0.8750.875 0.71(3)0.71(3)

(ρ0 = 0.16 fm-

3)

• ratio of ratio of △△MCMC to △ to △MFMF

noticeable reduction of noticeable reduction of △△MCMC fromfrom △ △MFMF by ~ 30 %by ~ 30 %

importance of pairing correlation induced by many-body importance of pairing correlation induced by many-body effects effects

even at low density even at low density

ρ ~ 10-4 ρ0 – 10-2 ρ0

Discussions about Discussions about 11SS00 pairing gap △ pairing gap △

Page 16: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

TcTc

kF = 0.15 fm-1(30 MeV)

a = 12.82 fm

t = 0.1261 MeV

N = 83

b. Phase Diagram: b. Phase Diagram: 11SS00 Superfluid Phase Superfluid Phase TransitionTransition

• S-wave Pair Correlation FunctionS-wave Pair Correlation Function

w/w/

• Determination of TcDetermination of Tc

TcTc is given by the inflexion point of

3.3. Results & DiscussionsResults & Discussions

Page 17: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

3.3. Results & DiscussionsResults & Discussions

• Pauli Spin SusceptibilityPauli Spin Susceptibility

b. Phase Diagram: Pseudo Gapb. Phase Diagram: Pseudo Gap

• Determination of T*Determination of T*

T*T* is identified with the maximum position of

T*T*

(BCS limit)(BCS limit) (BEC limit)(BEC limit)

kF = 0.15 fm-1(30 MeV)

a = 12.82 fm

t = 0.1261 MeV

N = 83

• A. Sewer, X. Zotos & H. Beck, Phys. Rev. B66, 140504 (2002)

Page 18: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

BECBECBCSBCS

BCS-BEC CrossoverBCS-BEC Crossover

(BCS limit)(BCS limit)

(BEC limit)(BEC limit)

A. Sewer, X. Zotos & H. Beck, Phys. Rev. B66, 140504 (2002)

|c|c00|/(a|/(a33t) = 0, 2, 4, 6, 8, 10, 12 t) = 0, 2, 4, 6, 8, 10, 12

(from top to bottom)(from top to bottom)

Page 19: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• E. Burovski, N. Prokofev, B. Svistunov, & M. Troyer, Phys. Rev. Lett. 96, 160402 (2006)

thermodynamic limitthermodynamic limit

continuum limitcontinuum limit

kF = 60 MeV

kF = 30 MeVkF = 15 MeV

Finite-size Scaling for Tc & T*Finite-size Scaling for Tc & T*

Page 20: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

Phase Diagram in thermodynamic & continuum limits Phase Diagram in thermodynamic & continuum limits

normalnormalpseudo gappseudo gap

11SS00 superfluid superfluid

T*T*

TcTc

• T. Abe & R. Seki, arXiv:07082523 T. Abe & R. Seki, arXiv:07082523

Page 21: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• △△/T/T

- approach the BCS value (△- approach the BCS value (△MFMF/Tc ~ 1.76) as the density decreases/Tc ~ 1.76) as the density decreases

evidence of the deviation from BCS weak-coupling approx.evidence of the deviation from BCS weak-coupling approx. even at low density rangingeven at low density ranging ρρ ~ 10 ~ 10-4-4 ρρ00 – 10 – 10-2-2 ρρ00

• phase diagram of low-density neutron matterphase diagram of low-density neutron matter - - drawn for the first time in a sense of ab initio calculationdrawn for the first time in a sense of ab initio calculation - existence of pseudo gap phase - existence of pseudo gap phase induced by the strong short-range correlationinduced by the strong short-range correlation

kkFF [MeV] [MeV] ρρ △△ [MeV][MeV] Tc Tc [MeV][MeV] T*T* [MeV] [MeV] △△/Tc/Tc △△/T*/T*

15 ~ 10-4 ρρ0 0.0207(9) 0.0124(6)0.0124(6) 0.013(1)0.013(1) 1.7(2)1.7(2) 1.6(2)1.6(2)

30 ~ 10-3 ρρ0 0.127(5)0.127(5) 0.066(3)0.066(3) 0.081(9)0.081(9) 1.9(2)1.9(2) 1.6(2)1.6(2)

60 ~ 10-2 ρρ0 0.62(2)0.62(2) 0.30(1)0.30(1) 0.49(5)0.49(5) 2.1(2)2.1(2) 1.3(2)1.3(2)

Discussions about Phase DiagramDiscussions about Phase Diagram

Page 22: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

4.4. NLO calc. (cNLO calc. (c00 & c & c22))

Page 23: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• Lattice HamiltonianLattice Hamiltonian Determinantal Quantum Monte Carlo (DQMC) MethodDeterminantal Quantum Monte Carlo (DQMC) Method

cc00 (LO) (LO)

cc00 & c & c22 (NLO) (NLO)

Page 24: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

• Calculation MethodsCalculation Methods

- Detarminantal Quantum Monte Carlo (DQMC) w/ MDS technique- Detarminantal Quantum Monte Carlo (DQMC) w/ MDS technique

All orders in cAll orders in c00 included, c included, c22 treated perturbatively treated perturbatively

Set upSet up

• Parameter set upParameter set up

- - kkFF = 60, 90, 120 MeV = 60, 90, 120 MeV

- - Temporal lattice: NTemporal lattice: Ntt = 4 – 128 = 4 – 128 (for observing the phase transition)(for observing the phase transition)

- Spatial lattice: N- Spatial lattice: Nss = 4 = 433

- Lattice filling: n = 1/4- Lattice filling: n = 1/4

sample # ~ 1,000 – 10,000 with 10 – 100 thermalization stepssample # ~ 1,000 – 10,000 with 10 – 100 thermalization steps

Performed @ NERSC Seaborg, Bassi & Titech GRID, TSUBAMEPerformed @ NERSC Seaborg, Bassi & Titech GRID, TSUBAME Comparison w/ one-parameter calc. @ Ns = 4Comparison w/ one-parameter calc. @ Ns = 433 & k & kFF = 60, 90, 120 MeV = 60, 90, 120 MeV

Page 25: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

BCS calcBCS calc

w/ polarization effectsw/ polarization effects

LO (cLO (c00 only) only)NLO (cNLO (c00 & c & c22))

• Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen & E. Osnes, Nuclear Phys. A 604, 446 (1996)Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen & E. Osnes, Nuclear Phys. A 604, 446 (1996)• J. Wambach, T. L. Ainsworth & D. Pines, Nuclear Phys. A 555, 128 (1993)J. Wambach, T. L. Ainsworth & D. Pines, Nuclear Phys. A 555, 128 (1993)

4. Preliminary Result & Comparison: △ @ Ns = 44. Preliminary Result & Comparison: △ @ Ns = 433 & n = 1/4 & n = 1/4 (w/o taking thermodynamic & continuum limits)(w/o taking thermodynamic & continuum limits)

ρ ~ 0.05ρ0

ρ ~ 0.02ρ0

Page 26: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

11SS00 superfluid superfluid

pseudo gappseudo gapnormalnormal

T*T*

TcTc

4. Preliminary Result & Comparison: Phase Diagram @ Ns = 44. Preliminary Result & Comparison: Phase Diagram @ Ns = 43 3 & & n = 1/4 n = 1/4 (w/o taking thermodynamic & continuum limits)(w/o taking thermodynamic & continuum limits)

Page 27: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

4.4. Summary Summary

• LO calc. @ T≠0 in Ns = 4LO calc. @ T≠0 in Ns = 433, 6, 633, 8, 833 (DQMC), 10 (DQMC), 103 3 (HMC) & Nt =2 – 128 (HMC) & Nt =2 – 128 • NLO calc. @ T≠0 in Ns = 4NLO calc. @ T≠0 in Ns = 433 & Nt =4 – 128 (DQMC) & Nt =4 – 128 (DQMC)

11SS00 pairing gap @ T ~ 0 pairing gap @ T ~ 0

- Reduction of △ by - Reduction of △ by ~ 30 %~ 30 % from BCS weak-coupling approx. from BCS weak-coupling approx.

Phase diagramPhase diagram

- - Existence ofExistence of Pseudo gap Pseudo gap

Importance of neutron-neutron pairing correlation even at low densityImportance of neutron-neutron pairing correlation even at low density

11SS00 pairing gap @ T ~ 0 & phase diagram pairing gap @ T ~ 0 & phase diagram

@ Ns = 4@ Ns = 433, n = 1/4 & k, n = 1/4 & kFF = 60, 90, 120 MeV = 60, 90, 120 MeV

- △ decreased- △ decreased - Tc & T* unaltered btw LO & NLO calc. -> thermodynamics controlled by LO ??- Tc & T* unaltered btw LO & NLO calc. -> thermodynamics controlled by LO ??

Feasible approach for the consistent calculation w/ NN EFT Feasible approach for the consistent calculation w/ NN EFT

up to ~ the pion mass (at least @ T~ 0) up to ~ the pion mass (at least @ T~ 0)

LO calc. (cLO calc. (c00 only) only)

NLO calc. (cNLO calc. (c00 & c & c22)) preliminarypreliminary

Page 28: 高エネルギー加速器研究機構 素粒子原子核研究所 Nov. 20, 2007

4.4. Outlook Outlook

• Completion of NLO calc. in thermodynamic & continuum limitsCompletion of NLO calc. in thermodynamic & continuum limits• Calculation @ higher density Calculation @ higher density by including pionspions, …

• Other partial wavesOther partial waves 3P-F2, … <- astrophysical interest from internal structure of NS • Nuclear matter Nuclear matter enhancement of △ by polarization effects??, …enhancement of △ by polarization effects??, …• Application to the finite nucleiApplication to the finite nuclei di-neutron correlation in halo nuclei (dimer), neutron droplets, …

ρρ kkFF [MeV] [MeV] Potential termPotential term

~ 0.006ρρ0 0 - 60 1 term (a1 term (a00))

~ 0.07ρρ0 0 - 1400 - 140 2 terms (a2 terms (a00, r, r00))

~ 0.5ρρ0 0 - 2600 - 260 2 terms + 2 terms + ππ

ρ0 = 0.16 fm-3